Log in

Chiral plasmonics and enhanced chiral light-matter interactions

  • Invited Review
  • Frontier Forum on Plasmonics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Chirality, which describes the broken mirror symmetry in geometric structures, exists macroscopically in our daily life as well as microscopically down to molecular levels. Correspondingly, chiral molecules interact differently with circularly polarized light exhibiting opposite handedness (left-handed and right-handed). However, the interaction between chiral molecules and chiral light is very weak. In contrast, artificial chiral plasmonic structures can generate “super-chiral” plasmonic near-field, leading to enhanced chiral light-matter (or chiroptical) interactions. The “super-chiral” near-field presents different amplitude and phase under opposite handedness incidence, which can be utilized to engineer linear and nonlinear chiroptical interactions. Specifically, in the interaction between quantum emitters and chiral plasmonic structures, the chiral hot spots can favour the emission with a specific handedness. This article reviews the state-of-the-art research on the design, fabrication and chiroptical response of different chiral plasmonic nanostructures or metasurfaces. This review also discusses enhanced chiral light-matter interactions that are essential for applications like chirality sensing, chiral selective light emitting and harvesting. In the final part, the review ends with a perspective on future directions of chiral plasmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pasteur, Ann. Chim. Phys. 24, 442 (1848).

    Google Scholar 

  2. S. J. Yoo, and Q. H. Park, Nanophotonics 8, 249 (2019).

    Article  Google Scholar 

  3. M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, Sci. Adv. 3, e1602735 (2017).

    Article  ADS  Google Scholar 

  4. Y. Luo, C. Chi, M. Jiang, R. Li, S. Zu, Y. Li, and Z. Fang, Adv. Opt. Mater. 5, 1700040 (2017).

    Article  Google Scholar 

  5. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, Adv. Mater. 25, 2517 (2013).

    Article  Google Scholar 

  6. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, Nanotechnology 27, 412001 (2016).

    Article  Google Scholar 

  7. X. Wang, and Z. Tang, Small 13, 1601115 (2017).

    Article  Google Scholar 

  8. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, Phys. Rev. X 2, 031010 (2012).

    Google Scholar 

  9. S. Zu, Y. Bao, and Z. Fang, Nanoscale 8, 3900 (2016).

    Article  ADS  Google Scholar 

  10. C. Zhang, Z. Q. Li, X. Yang, Z. Chen, and Z. Wang, AIP Adv. 6, 125014 (2016).

    Article  ADS  Google Scholar 

  11. R. Ogier, Y. Fang, M. Svedendahl, P. Johansson, and M. Käll, ACS Photon. 1, 1074 (2014).

    Article  Google Scholar 

  12. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).

    Article  ADS  Google Scholar 

  13. X. Lan, and Q. Wang, Adv. Mater. 28, 10499 (2016).

    Article  Google Scholar 

  14. H. E. Lee, H. Y. Ahn, J. Lee, and K. T. Nam, ChemNanoMat 3, 685 (2017).

    Article  Google Scholar 

  15. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, Nature 483, 311 (2012), ar**v: 1108.3752.

    Article  ADS  Google Scholar 

  16. P. Banzer, P. Wozniak, U. Mick, I. De Leon, and R. W. Boyd, Nat. Commun. 7, 13117 (2016), ar**v: 1601.01900.

    Article  ADS  Google Scholar 

  17. K. Dietrich, C. Menzel, D. Lehr, O. Puffky, U. Hübner, T. Pertsch, A. Tünnermann, and E. B. Kley, Appl. Phys. Lett. 104, 193107 (2014).

    Article  ADS  Google Scholar 

  18. Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, Light Sci. Appl. 7, 25 (2018).

    Article  ADS  Google Scholar 

  19. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).

    Article  ADS  Google Scholar 

  20. L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J. Norris, Nano Lett. 18, 4633 (2018).

    Article  ADS  Google Scholar 

  21. W. Ye, X. Yuan, C. Guo, J. Zhang, B. Yang, and S. Zhang, Phys. Rev. Appl. 7, 054003 (2017), ar**v: 1805.00170.

    Article  ADS  Google Scholar 

  22. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, Nano Lett. 9, 3945 (2009).

    Article  ADS  Google Scholar 

  23. S. Chen, F. Zeuner, M. Weismann, B. Reineke, G. Li, V. K. Valev, K. W. Cheah, N. C. Panoiu, T. Zentgraf, and S. Zhang, Adv. Mater. 28, 2992 (2016).

    Article  Google Scholar 

  24. S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, and W. Cai, Adv. Mater. 26, 6157 (2014).

    Article  Google Scholar 

  25. G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, Nano Lett. 17, 7974 (2017).

    Article  ADS  Google Scholar 

  26. V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, Adv. Mater. 26, 4074 (2014).

    Article  Google Scholar 

  27. J. Kumar, and L. M. Liz-Marzán, Bull. Chem. Soc. Jpn. 92, 30 (2019).

    Article  Google Scholar 

  28. V. E. Bochenkov, and T. I. Shabatina, Biosensors 8, 120 (2018).

    Article  Google Scholar 

  29. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, Nat. Commun. 8, 14180 (2017).

    Article  ADS  Google Scholar 

  30. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, Nat. Nanotech. 5, 783 (2010).

    Article  ADS  Google Scholar 

  31. R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, J. Am. Chem. Soc. 137, 8380 (2015).

    Article  Google Scholar 

  32. X. Wu, L. Xu, L. Liu, W. Ma, H. Yin, H. Kuang, L. Wang, C. Xu, and N. A. Kotov, J. Am. Chem. Soc. 135, 18629 (2013).

    Article  Google Scholar 

  33. W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, Nat. Commun. 4, 2689 (2013).

    Article  ADS  Google Scholar 

  34. Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, and C. Xu, Chem. Commun. 48, 5760 (2012).

    Article  Google Scholar 

  35. B. Han, Z. Zhu, Z. Li, W. Zhang, and Z. Tang, J. Am. Chem. Soc. 136, 16104 (2014).

    Article  Google Scholar 

  36. G. Colas des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux, A. Cuche, and C. Girard, J. Opt. 18, 094005 (2016), ar**v: 1603.09403.

    Article  ADS  Google Scholar 

  37. N. Meinzer, E. Hendry, and W. L. Barnes, Phys. Rev. B 88, 041407 (2013).

    Article  ADS  Google Scholar 

  38. Z. Wang, Y. Wang, G. Adamo, J. Teng, and H. Sun, Laser Photon. Rev. 13, 1800276 (2019).

    Article  ADS  Google Scholar 

  39. S. P. Rodrigues, Y. Cui, S. Lan, L. Kang, and W. Cai, Adv. Mater. 27, 1124 (2015).

    Article  Google Scholar 

  40. Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, ACS Nano 11, 1165 (2017).

    Article  Google Scholar 

  41. Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, Adv. Mater. 30, 1801908 (2018).

    Article  Google Scholar 

  42. H. T. Lin, C. Y. Chang, P. J. Cheng, M. Y. Li, C. C. Cheng, S. W. Chang, L. L. J. Li, C. W. Chu, P. K. Wei, and M. H. Shih, ACS Appl. Mater. Interfaces 10, 15996 (2018).

    Article  Google Scholar 

  43. X. Xu, W. Yao, D. **ao, and T. F. Heinz, Nat. Phys. 10, 343 (2014).

    Article  Google Scholar 

  44. J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Nat. Rev. Mater. 1, 16055 (2016).

    Article  ADS  Google Scholar 

  45. K. F. Mak, D. **ao, and J. Shan, Nat. Photon. 12, 451 (2018).

    Article  ADS  Google Scholar 

  46. A. Singh, K. Tran, M. Kolarczik, J. Seifert, Y. Wang, K. Hao, D. Pleskot, N. M. Gabor, S. Helmrich, N. Owschimikow, U. Woggon, and X. Li, Phys. Rev. Lett. 117, 257402 (2016), ar**v: 1608.00038.

    Article  ADS  Google Scholar 

  47. W. T. Hsu, Y. L. Chen, C. H. Chen, C. H. Chen, P. S. Liu, T. H. Hou, L. J. Li, and W. H. Chang, Nat. Commun. 6, 8963 (2015).

    Article  ADS  Google Scholar 

  48. A. Neumann, J. Lindlau, L. Colombier, M. Nutz, S. Najmaei, J. Lou, A. D. Mohite, H. Yamaguchi, and A. Högele, Nat. Nanotech. 12, 329 (2017), ar**v: 1902.06856.

    Article  ADS  Google Scholar 

  49. M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotech. 10, 25 (2015).

    Article  ADS  Google Scholar 

  50. C. Clavero, Nat. Photon. 8, 95 (2014).

    Article  ADS  Google Scholar 

  51. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, Nat. Commun. 6, 8379 (2015).

    Article  ADS  Google Scholar 

  52. Y. Fang, R. Verre, L. Shao, P. Nordlander, and M. Käll, Nano Lett. 16, 5183 (2016).

    Article  ADS  Google Scholar 

  53. C. Hao, L. Xu, W. Ma, X. Wu, L. Wang, H. Kuang, and C. Xu, Adv. Funct. Mater. 25, 5816 (2015).

    Article  Google Scholar 

  54. S. Weiss, Science 283, 1676 (1999).

    Article  ADS  Google Scholar 

  55. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, Science 340, 331 (2013).

    Article  ADS  Google Scholar 

  56. S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, Science 359, 443 (2018).

    Article  ADS  Google Scholar 

  57. T. Narushima, and H. Okamoto, J. Phys. Chem. C 117, 23964 (2013).

    Article  Google Scholar 

  58. S. Zu, T. Han, M. Jiang, F. Lin, X. Zhu, and Z. Fang, ACS Nano 12, 3908 (2018).

    Article  Google Scholar 

  59. M. Kociak, and O. Stéphan, Chem. Soc. Rev. 43, 3865 (2014).

    Article  Google Scholar 

  60. A. Asenjo-Garcia, and F. J. García de Abajo, Phys. Rev. Lett. 113, 066102 (2014).

    Article  ADS  Google Scholar 

  61. G. Guzzinati, A. Béché, H. Lourenço-Martins, J. Martin, M. Kociak, and J. Verbeeck, Nat. Commun. 8, 14999 (2017), ar**v: 1608.07449.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **nglin Wen or Qihua **ong.

Additional information

This work was supported by the Singapore National Research Foundation-Agence Nationale de la Recherche (Grant No. NRF2017-NRF-ANR005 2D-CHIRAL).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Wen, X., Gérard, D. et al. Chiral plasmonics and enhanced chiral light-matter interactions. Sci. China Phys. Mech. Astron. 63, 244201 (2020). https://doi.org/10.1007/s11433-019-1436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1436-4

Keywords

Navigation