Log in

The influence of target material and thickness on proton energy and angular distribution

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The paper has studied the influence of target material and thickness on energy and angular distributions of the protons generated by using an 800 nm, 60 fs, 0.24 J laser pulse to irradiate solid target foils. The results show that the initial density and thickness of the targets will affect the formation of the acceleration sheath fields in the target normal direction. For the same target thickness, using lower density target materials can obtain a higher proton maximum energy. However, lower density targets tend to be deformed due to the shock waves launched by the laser pulses, making the proton spatial distribution more divergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borghesi M, Campbell D H, Schiavi A, et al. Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys Plasmas, 2002, 9: 2214–2220

    Article  ADS  Google Scholar 

  2. Kodama R, Norreys P A, Mima K, et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature, 2001, 412: 798–802

    Article  ADS  Google Scholar 

  3. Bulanov S S, Brantov A, Bychenkov V Y, et al. Accelerating protons to therapeutic energies with ultra-intense ultra-clean and ultra-short laser pulses. Med Phys, 2008, 35: 1770–1776

    Article  Google Scholar 

  4. Zhang X M, Shen B F, Li X M, et al. Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Phys Plasmas, 2007, 14: 123108

    Article  ADS  Google Scholar 

  5. Yan X Q, Lin C, Sheng Z M, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys Rev Lett, 2008, 100: 135003

    Article  ADS  Google Scholar 

  6. Macchi A, Cattani F, Liseykina T V, et al. Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys Rev Lett, 2005, 94: 165003

    Article  ADS  Google Scholar 

  7. Kaluza M, Schreiber J, Santala M I K, et al. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys Rev Lett, 2004, 93: 045003

    Article  ADS  Google Scholar 

  8. Zhang X M, Shen B F, Yu M Y, et al. Effect of plasma temperature on electrostatic shock generation and ion acceleration by laser. Phys Plasmas, 2007, 14: 113108

    Article  ADS  Google Scholar 

  9. Silva L O, Marti M, Davies J R, et al. Proton shock acceleration in laser-plasma interactions. Phys Rev Lett, 2004, 92: 015002

    Article  ADS  Google Scholar 

  10. D'Humières E, Lefebvre E, Gremillet L, et al. Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys Plasmas, 2005, 12: 062704

    Article  ADS  Google Scholar 

  11. Wang X F, Nemoto K, Nayuki T, et al. Effect of plasma peak density on energetic proton emission in ultrashort high-intensity laser-foil interactions. Phys Plasmas, 2005, 12: 113101

    Article  ADS  Google Scholar 

  12. Holkundkar A R, Gupta N K. Effect of initial plasma density on laser induced ion acceleration. Phys Plasmas, 2008, 15: 123104

    Article  ADS  Google Scholar 

  13. Chen M, Sheng Z M, Dong Q L, et al. Ion acceleration by colliding electrostatic shock waves in laser-solid interaction. Phys Plasmas, 2007, 14: 113106

    Article  ADS  Google Scholar 

  14. Chen M, Sheng Z M, Dong Q L, et al. Collisionless electrostatic shock generation and ion acceleration by ultraintense laser pulses in overdense plasmas. Phys Plasmas, 2007, 14: 053102

    Article  ADS  Google Scholar 

  15. Wilks S C, Langdon A B, Cowan T E, et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys Plasmas, 2001, 8: 542–549

    Article  ADS  Google Scholar 

  16. Nakamura T, Fukuda Y, Yogo A, et al. High energy negative ion generation by Coulomb implosion mechanism. Phys Plasmas, 2009, 16: 113106

    Article  ADS  Google Scholar 

  17. Murakami M, Mima K. Efficient generation of quasimonoenergetic ions by Coulomb explosions of optimized nanostructured clusters. Phys Plasmas, 2009, 16: 103108

    Article  ADS  Google Scholar 

  18. Esirkepov T, Borghesi M, Bulanov S V, et al. Highly efficient relativisticion generation in the laser-piston regime. Phys Rev Lett, 2004, 92: 175003

    Article  ADS  Google Scholar 

  19. Santos J J, Debayle A, Nicolaï Ph, et al. Fast-electron transport and induced heating in aluminum foils. Phys Plasmas, 2007, 14: 103107

    Article  ADS  Google Scholar 

  20. Manclossi M, Santos J J, Batani D, et al. Study of ultraintense laser-produced fast-electron propagation and filamentation in insulator and metal foil targets by optical emission diagnostics. Phys Rev Lett, 2006, 96: 125002

    Article  ADS  Google Scholar 

  21. Santos J J, Amiranoff F, Baton S D, et al. Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics. Phys Rev Lett, 2002, 89: 025001

    Article  ADS  Google Scholar 

  22. Malka G, Miquel J L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys Rev Lett, 1996, 77: 75–78

    Article  ADS  Google Scholar 

  23. Wilks S C, Kruer W L, Tabak M, et al. Absorption of ultra-intense laser pulses. Phys Rev Lett, 1992, 69: 1383–1386

    Article  ADS  Google Scholar 

  24. Fuchs J, Antici P, D'Humières E, et al. Laser-driven proton scaling laws and new paths towards energy increase. Nat Phys, 2006, 2: 48–54

    Article  Google Scholar 

  25. Mora P. Plasma expansion into a vacuum. Phys Rev Lett, 2003, 90: 185002

    Article  ADS  Google Scholar 

  26. Honrubia J, Kaluza M, Schreiber J, et al. Laser-driven fast-electron transport in preheated foil targets. Phys Plasmas, 2005, 12: 052708

    Article  ADS  Google Scholar 

  27. Flacco A, Sylla F, Veltcheva M, et al. Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration. Phys Rev E, 2010, 81: 036405

    Article  ADS  Google Scholar 

  28. Lindau F, Lundh O, Persson A, et al. Laser-accelerated protons with energy-dependent beam direction. Phys Rev Lett, 2005, 95: 175002

    Article  ADS  Google Scholar 

  29. Lundh O, Lindau F, Persson A, et al. Influence of shock waves on laser-driven proton acceleration. Phys Rev E, 2007, 76: 026404

    Article  ADS  Google Scholar 

  30. Brambrink E, Roth M, Blazevic A, et al. Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part Beams, 2006, 24: 163–168

    Article  Google Scholar 

  31. Xu M H, Li Y T, Liu F, et al. Enhancement of ion generation in low-contrast laser-foil interactions by defocusing. Acta Phys Sin, 2011, 60: 045204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuTong Li or Jie Zhang.

Additional information

Contributed by CHEN JiaEr (CAS Academician) & ZHANG Jie (CAS Academician

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, L., Liu, B., Lin, X. et al. The influence of target material and thickness on proton energy and angular distribution. Sci. China Phys. Mech. Astron. 56, 457–461 (2013). https://doi.org/10.1007/s11433-012-4961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4961-9

Keywords

Navigation