Log in

Stability of the distributed Kalman filter using general random coefficients

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we propose a distributed Kalman filter (DKF) for the dynamical system with general random coefficients. In the proposed method, each estimator shares local innovation pairs with its neighbors to collectively complete the estimation task. Further, we introduce a collective random observability condition by which the Lp-stability of the covariance matrix and the Lp-exponential stability of the homogeneous part of the estimation error equation can be established. In contrast, the stringent conditions on the coefficient matrices, such as independency and stationarity are not required. Besides, the stability of the DKF, i.e., the boundedness of the filtering errors, can be established. Finally, from the simulation result, we demonstrate the cooperative effect of the sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang J G, Li B, Chang J, et al. Unscented Kalman-filter-based sliding mode control for an underwater gliding snake-like robot. Sci China Inf Sci, 2020, 63: 112207

    Article  MathSciNet  Google Scholar 

  2. Kalman R E. A new approach to linear filtering and prediction problems. J Basic Eng, 1960, 82: 35–45

    Article  MathSciNet  Google Scholar 

  3. Kailath T, Sayed A H, Hassibi B. Linear Estimation. Upper Saddle River: Prentice-Hall, 2000

    MATH  Google Scholar 

  4. Deng Z L, Gao Y, Mao L, et al. New approach to information fusion steady-state Kalman filtering. Automatica, 2005, 41: 1695–1707

    Article  MathSciNet  Google Scholar 

  5. Battistelli G, Chisci L, Mugnai G, et al. Consensus-based linear and nonlinear filtering. IEEE Trans Automat Contr, 2015, 60: 1410–1415

    Article  MathSciNet  Google Scholar 

  6. Olfati-Saber R. Distributed Kalman filtering for sensor networks. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, 2007. 5492–5498

  7. Li W L, Jia Y M. Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise. Signal Process, 2012, 92: 2464–2470

    Article  Google Scholar 

  8. Zhang Z, Li J X, Liu L. Distributed state estimation and data fusion in wireless sensor networks using multi-level quantized innovation. Sci China Inf Sci, 2016, 59: 022316

    Google Scholar 

  9. Zhao Y, He X, Zhou D H. Distributed filtering for time-varying networked systems with sensor gain degradation and energy constraint: a centralized finite-time communication protocol scheme. Sci China Inf Sci, 2018, 61: 092208

    Article  MathSciNet  Google Scholar 

  10. Chen C, Liu Z X, Guo L. Performance bounds of distributed adaptive filters with cooperative correlated signals. Sci China Inf Sci, 2016, 59: 112202

    Article  MathSciNet  Google Scholar 

  11. **e S Y, Guo L. Analysis of distributed adaptive filters based on diffusion strategies over sensor networks. IEEE Trans Automat Contr, 2018, 63: 3643–3658

    Article  MathSciNet  Google Scholar 

  12. Battistelli G, Chisci L. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica, 2014, 50: 707–718

    Article  MathSciNet  Google Scholar 

  13. Zhou J M, Gu G X, Chen X. Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops. IEEE Trans Automat Contr, 2019, 64: 1603–1610

    Article  MathSciNet  Google Scholar 

  14. Liu Q Y, Wang Z D, He X, et al. On Kalman-consensus filtering with random link failures over sensor networks. IEEE Trans Automat Contr, 2018, 63: 2701–2708

    Article  MathSciNet  Google Scholar 

  15. Carli R, Chiuso A, Schenato L, et al. Distributed Kalman filtering based on consensus strategies. IEEE J Sel Areas Commun, 2008, 26: 622–633

    Article  Google Scholar 

  16. Leng M, Tay W P, Quek T Q S, et al. Distributed local linear parameter estimation using Gaussian SPAWN. IEEE Trans Signal Process, 2015, 63: 244–257

    Article  MathSciNet  Google Scholar 

  17. Sayed A H, Tu S Y, Chen J S, et al. Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior. IEEE Signal Process Mag, 2013, 30: 155–171

    Article  Google Scholar 

  18. He X K, Hu C, Hong Y H, et al. Distributed Kalman filters with state equality constraints: time-based and event-triggered communications. IEEE Trans Automat Contr, 2020, 65: 28–43

    Article  MathSciNet  Google Scholar 

  19. Wang S, Ren W. On the convergence conditions of distributed dynamic state estimation using sensor networks: a unified framework. IEEE Trans Contr Syst Technol, 2018, 26: 1300–1316

    Article  Google Scholar 

  20. Olfati-Saber R, Jalalkamali P. Coupled distributed estimation and control for mobile sensor networks. IEEE Trans Automat Contr, 2012, 57: 2609–2614

    Article  MathSciNet  Google Scholar 

  21. Yang W, Chen G, Wang X, et al. Stochastic sensor activation for distributed state estimation over a sensor network. Automatica, 2014, 50: 2070–2076

    Article  MathSciNet  Google Scholar 

  22. Schizas I D, Mateos G, Giannakis G B. Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans Signal Process, 2009, 57: 2365–2382

    Article  MathSciNet  Google Scholar 

  23. Takahashi N, Yamada I, Sayed A H. Diffusion least-mean squares with adaptive combiners: formulation and performance analysis. IEEE Trans Signal Process, 2010, 58: 4795–4810

    Article  MathSciNet  Google Scholar 

  24. Wang Y, Guo L. On stability of random Riccati equations. Sci China Ser E-Technol Sci, 1999, 42: 136–148

    Article  MathSciNet  Google Scholar 

  25. Guo L. Stability of recursive stochastic tracking algorithms. SIAM J Control Opt, 1994, 32: 1195–1225

    Article  MathSciNet  Google Scholar 

  26. Guo L. Time-varying Stochastic Systems. Jilin: Jilin Scientific and Technological Press, 1993

    Google Scholar 

  27. Welch G, Bishop G. An Introduction to the Kalman Filter. Department of Computer Science, University of North Carolina at Chapel Hill, Technical Report, 2000

  28. Olfati-Saber R. Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE Conference on Decision and Control, Seville, 2005. 8179–8184

  29. Speranzon A, Fischione C, Johansson K H, et al. A distributed minimum variance estimator for sensor networks. IEEE J Sel Areas Commun, 2008, 26: 609–621

    Article  Google Scholar 

  30. Boem F, Xu Y, Fischione C, et al. A distributed pareto-optimal dynamic estimation method. In: Proceedings of European Control Conference, 2015. 3673–3680

  31. He X K, Xue W C, Fang H T. Consistent distributed state estimation with global observability over sensor network. Automatica, 2018, 92: 162–172

    Article  MathSciNet  Google Scholar 

  32. Talebi S P, Werner S. Distributed Kalman filtering and control through embedded average consensus information fusion. IEEE Trans Automat Contr, 2019, 64: 4396–4403

    Article  MathSciNet  Google Scholar 

  33. Godsil C, Royle G. Algebraic Graph Theory. Berlin: Springer, 2014

    MATH  Google Scholar 

  34. **e S Y, Zhang Y Q, Guo L. Learning and prediction theory of distributed least squares. 2019. Ar**v: 1912.11686

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11688101) and National Key R&D Program of China (Grant No. 2018YFA0703800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, D., **e, S. & Liu, Z. Stability of the distributed Kalman filter using general random coefficients. Sci. China Inf. Sci. 64, 172204 (2021). https://doi.org/10.1007/s11432-020-2962-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2962-9

Keywords

Navigation