Log in

An investigation on topologies of hybrid manifold, im**ing-jet nozzle and micro-pin-fin heat sinks

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The hybrid manifold micro-pin-fin (MMPF) heat sink combined nozzle jets is an option for large-scale integrated circuits (LSI). The demond for uniform and ultra-high heat flux removal by MMPF heat sink has not been adequately investigated. This work aims to solve the problem of fluid organization. The proposed basic tiling topologies, including square, regular hexagon, 30° rhombus, and 60° rhombus topologies, provide different organized fluid flows and heat transfer patterns. The present study focuses on comparing these topologies according to independent porous medium parameters, such as nozzle pore size DZ, flow pore size DX,Y, and porosity ε. The results show that the square topology achieves the smallest total thermal resistance Rtot value of 0.0975 × 10−4 K m2/W, while the hexagon topology achieved the highest value of COP/ΔT, which was 2033.9 K−1. According to the sensitivity analysis results, the optimal total thermal resistance can be obtained by balancing the influences of nozzle pore size, flow pore size, and porosity. The optimal pressure drop can be obtained by maximizing the porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang H, Tang Y, Zhuang B, et al. Experimental investigation of the thermal performance of heat pipes with double-ended heating and middle-cooling. Energy Convers Manage, 2017, 148: 1332–1345

    Article  Google Scholar 

  2. Chen Y, Li B, Wang X, et al. Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for igbt power module. Thermal Sci Eng Prog, 2019, 10: 73–81

    Article  Google Scholar 

  3. Wen H, Liang Z, Luo Q, et al. Heat transfer performance study of microchannel heat sink with composite secondary channels. Int Commun Heat Mass Transfer, 2023, 143: 106718

    Article  Google Scholar 

  4. Kong L, Liu Z, Jia L, et al. Experimental study on flow and heat transfer characteristics at onset of nucleate boiling in micro pin fin heat sinks. Exp Thermal Fluid Sci, 2020, 115: 109946

    Article  Google Scholar 

  5. Guo Y C, Li Z G, Wang K, et al. A transient multiphysics coupling method based on openfoam for heat pipe cooled reactors. Sci China Tech Sci, 2022, 65: 102–114

    Google Scholar 

  6. Le Q, Shi Q, Liu Q, et al. Numerical investigation on manifold immersion cooling scheme for lithium ion battery thermal management application. Int J Heat Mass Transfer, 2022, 190: 122750

    Article  Google Scholar 

  7. Ju X, Xu C, Liao Z, et al. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR). Sci Bull, 2017, 62: 1388–1426

    Article  Google Scholar 

  8. Ju X, Xu C, Han X, et al. A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology. Appl Energy, 2017, 187: 534–563

    Article  Google Scholar 

  9. Colangelo G, Favale E, Milanese M, et al. Cooling of electronic devices: Nanofluids contribution. Appl Thermal Eng, 2017, 127: 421–435

    Article  Google Scholar 

  10. Bandaru S V R, Villanueva W, Konovalenko A, et al. Upward-facing multi-nozzle spray cooling experiments for external cooling of reactor pressure vessels. Int J Heat Mass Transfer, 2020, 163: 120516

    Article  Google Scholar 

  11. Lu Z, Salamon T R, Narayanan S, et al. Design and modeling of membrane-based evaporative cooling devices for thermal management of high heat fluxes. IEEE Trans Compon Packag Manufact Technol, 2016, 6: 1056–1065

    Article  Google Scholar 

  12. Cui X, Yan W, Liu Y, et al. Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling. Appl Energy, 2020, 271: 115238

    Article  Google Scholar 

  13. Muneeshwaran M, Tsai M K, Wang C C. Heat transfer augmentation of natural convection heat sink through notched fin design. Int Commun Heat Mass Transfer, 2023, 142: 106676

    Article  Google Scholar 

  14. Zhou J H, Chen X M, Li Q. Numerical study on two-phase boiling heat transfer performance of interrupted microchannel heat sinks. Sci China Tech Sci, 2022, 65: 679–692

    Article  Google Scholar 

  15. Shao S, Liu H, Zhang H, et al. Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers. Energy, 2019, 185: 829–836

    Article  Google Scholar 

  16. Tuckerman D B, Pease R F W. High-performance heat sinking for vlsi. IEEE Electron Device Lett, 1981, 2: 126–129

    Article  Google Scholar 

  17. van Erp R, Soleimanzadeh R, Nela L, et al. Co-designing electronics with microfluidics for more sustainable cooling. Nature, 2020, 585: 211–216

    Article  Google Scholar 

  18. Hadipour A, Rajabi Zargarabadi M, Dehghan M. Effect of micro-pin characteristics on flow and heat transfer by a circular jet im**ing to the flat surface. J Therm Anal Calorim, 2020, 140: 943–951

    Article  Google Scholar 

  19. Gil P, Wilk J, Smusz R, et al. Centerline heat transfer coefficient distributions of synthetic jets im**ement cooling. Int J Heat Mass Transfer, 2020, 160: 120147

    Article  Google Scholar 

  20. Tepe A Ü, Uysal Ü, Yetişken Y, et al. Jet im**ement cooling on a rib-roughened surface using extended jet holes. Appl Thermal Eng, 2020, 178: 115601

    Article  Google Scholar 

  21. Tepe A Ü, Yetişken Y, Uysal Ü, et al. Experimental and numerical investigation of jet im**ement cooling using extended jet holes. Int J Heat Mass Transfer, 2020, 158: 119945

    Article  Google Scholar 

  22. Wu R, Fan Y, Hong T, et al. An immersed jet array im**ement cooling device with distributed returns for direct body liquid cooling of high power electronics. Appl Thermal Eng, 2019, 162: 114259

    Article  Google Scholar 

  23. Kim S M, Afzal A, Kim K Y. Optimization of a staggered jet-convex dimple array cooling system. Int J Thermal Sci, 2016, 99: 161–169

    Article  Google Scholar 

  24. Hoberg T B, Onstad A J, Eaton J K. Heat transfer measurements for jet im**ement arrays with local extraction. Int J Heat Fluid Flow, 2010, 31: 460–467

    Article  Google Scholar 

  25. Cui F L, Hong F J, Cheng P. Comparison of normal and distributed jet array im**ement boiling of HFE-7000 on smooth and pin-fin surfaces. Int J Heat Mass Transfer, 2018, 126: 1287–1298

    Article  Google Scholar 

  26. Wang L, **e Z H, Chen L G, et al. Equivalent thermal resistance minimization for a circular disc heat sink with reverting microchannels based on constructal theory and entransy theory. Sci China Tech Sci, 2021, 64: 111–121

    Article  Google Scholar 

  27. Manikanda Kumaran R, Kumaraguruparan G, Sornakumar T. Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels. Appl Thermal Eng, 2013, 58: 205–216

    Article  Google Scholar 

  28. Huang F, Qiu D, Xu Z, et al. Analysis and improvement of flow distribution in manifold for proton exchange membrane fuel cell stacks. Energy, 2021, 226: 120427

    Article  Google Scholar 

  29. He Z, Yan Y, Feng S, et al. Multi-objective optimizations on thermal and hydraulic performance of symmetric and asymmetric bionic y-shaped fractal networks by genetic algorithm coupled with cfd simulation. Int Commun Heat Mass Transfer, 2021, 124: 105261

    Article  Google Scholar 

  30. Chen Y, Cheng P. An experimental investigation on the thermal efficiency of fractal tree-like microchannel nets. Int Commun Heat Mass Transfer, 2005, 32: 931–938

    Article  Google Scholar 

  31. Tan H, Wu L, Wang M, et al. Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling. Int J Heat Mass Transfer, 2019, 129: 681–689

    Article  Google Scholar 

  32. Ghani I A, Che Sidik N A, Kamaruzzaman N, et al. The effect of manifold zone parameters on hydrothermal performance of microchannel heatsink: A review. Int J Heat Mass Transfer, 2017, 109: 1143–1161

    Article  Google Scholar 

  33. Alihosseini Y, Zabetian Targhi M, Heyhat M M, et al. Effect of a micro heat sink geometric design on thermo-hydraulic performance: A review. Appl Thermal Eng, 2020, 170: 114974

    Article  Google Scholar 

  34. Siddiqui O K, Zubair S M. Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review. Renew Sustain Energy Rev, 2017, 74: 969–1002

    Article  Google Scholar 

  35. He Z, Yan Y, Zhang Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy, 2021, 216: 119223

    Article  Google Scholar 

  36. Chen L G, Yang A B, Feng H J, et al. Constructal design progress for eight types of heat sinks. Sci China Tech Sci, 2020, 63: 879–911

    Article  Google Scholar 

  37. Lee J, Kim Y, Lorente S, et al. Constructal design of a comb-like channel network for self-healing and self-cooling. Int J Heat Mass Transfer, 2013, 66: 898–905

    Article  Google Scholar 

  38. Yan Y, Yan H, Yin S, et al. Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic y-shaped fractal network by genetic algorithm coupled with numerical simulation. Int J Heat Mass Transfer, 2019, 129: 468–479

    Article  Google Scholar 

  39. Bejan A, Lorente S. Design with Constructal Theory. Hoboken: John Wiley & Sons Inc., 2008

    Book  Google Scholar 

  40. Bejan A. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. Boca Raton: CRC Press, 1995

    Google Scholar 

  41. Tondeur D, Luo L. Design and scaling laws of ramified fluid distributors by the constructal approach. Chem Eng Sci, 2004, 59: 1799–1813

    Article  Google Scholar 

  42. Tondeur D, Fan Y, Commenge J M, et al. Flow and pressure distribution in linear discrete “ladder-type” fluidic circuits: An analytical approach. Chem Eng Sci, 2011, 66: 2568–2586

    Article  Google Scholar 

  43. Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545–2556

    Article  Google Scholar 

  44. Gilmore N, Timchenko V, Menictas C. Manifold microchannel heat sink topology optimisation. Int J Heat Mass Transfer, 2021, 170: 121025

    Article  Google Scholar 

  45. Wei T, Oprins H, Cherman V, et al. Experimental and numerical investigation of direct liquid jet im**ing cooling using 3D printed manifolds on lidded and lidless packages for 2.5D integrated systems. Appl Thermal Eng, 2020, 164: 114535

    Article  Google Scholar 

  46. He Z, Yan Y, Xu F, et al. Combustion characteristics and thermal enhancement of premixed hydrogen/air in micro combustor with pin fin arrays. Int J Hydrogen Energy, 2020, 45: 5014–5027

    Article  Google Scholar 

  47. Escher W, Michel B, Poulikakos D. A novel high performance, ultra thin heat sink for electronics. Int J Heat Fluid Flow, 2010, 31: 586–598

    Article  Google Scholar 

  48. Ju X, Xu C, Zhou Y, et al. Numerical investigation of a novel manifold micro-pin-fin heat sink combining chessboard nozzle-jet concept for ultra-high heat flux removal. Int J Heat Mass Transfer, 2018, 126: 1206–1218

    Article  Google Scholar 

  49. Yao X L, Shi Q L, Liu Q, et al. An investigation on application potentiality of microstructure heat sinks with different flow topological morphology. Sci China Tech Sci, 2022, 65: 2895–2909

    Article  Google Scholar 

  50. Shi Q L, Liu Q, Li K X, et al. Numerical investigation of different nozzle-jet distributions based on chessboard high-topology composite heat sink (in Chinese). Sci Sin Tech, 2021, 51: 699–710

    Article  Google Scholar 

  51. Shi Q, Liu Q, Yao X, et al. Optimal design on irregular polygon topology for the manifold micro-pin-fin heat sink. Int Commun Heat Mass Transfer, 2023, 141: 106574

    Article  Google Scholar 

  52. Huggett S A, Mason L J, Tod K P, et al. The Geometric Universe. London: Oxford University Press, 1998

    Book  Google Scholar 

  53. Kim S J. Methods for thermal optimization of microchannel heat sinks. Heat Transfer Eng, 2004, 25: 37–49

    Article  Google Scholar 

  54. Gong L, Li Y, Bai Z, et al. Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design. Appl Thermal Eng, 2018, 137: 288–295

    Article  Google Scholar 

  55. Arie M A, Shooshtari A H, Dessiatoun S V, et al. Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger. Int J Heat Mass Transfer, 2015, 81: 478–489

    Article  Google Scholar 

  56. Qu W, Siu-Ho A. Liquid single-phase flow in an array of micro-pin-fins—Part I: Heat transfer characteristics. J Heat Transfer, 2008, 130: 122402

    Article  Google Scholar 

  57. McNaughton K J, Sinclair C G. Submerged jets in short cylindrical flow vessels. J Fluid Mech, 1966, 25: 367–375

    Article  Google Scholar 

  58. Marzban S, Lahmer T. Conceptual implementation of the variance-based sensitivity analysis for the calculation of the first-order effects. J Statistical Theor Pract, 2016, 10: 589–611

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ing-jet%20nozzle%20and%20micro-pin-fin%20heat%20sinks&author=QianLei%20Shi%20et%20al&contentID=10.1007%2Fs11431-023-2428-0&copyright=Science%20China%20Press&publication=1674-7321&publicationDate=2024-01-09&publisherName=SpringerNature&orderBeanReset=true">Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Yao, X., Liu, Q. et al. An investigation on topologies of hybrid manifold, im**ing-jet nozzle and micro-pin-fin heat sinks. Sci. China Technol. Sci. 67, 1061–1076 (2024). https://doi.org/10.1007/s11431-023-2428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2428-0

Navigation