Log in

3D simulation of image-defined complex internal features using the numerical manifold method

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The numerical simulation of internal features, such as inclusions and voids, is important to analyze their impact on the performance of composite materials. However, the complex geometries of internal features and the induced continuous-discontinuous (C-D) deformation fields are challenges to their numerical simulation. In this study, a 3D approach using a simple mesh to simulate irregular internal geometries is developed for the first time. With the help of a developed voxel crack model, image models that are efficient when recording complex geometries are directly imported into the simulation. Surface reconstructions, which are usually labor-intensive, are excluded from this approach. Moreover, using image models as the geometric input, image processing techniques are applied to detect material interfaces and develop contact pairs. Then, the C-D deformations of the complex internal features are directly calculated based on the numerical manifold method. The accuracy and convergence of the developed 3D approach are examined based on multiple benchmarks. Successful 3D C-D simulation of sandstones with naturally formed complex microfeatures demonstrates the capability of the developed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. **g L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci, 2003, 40: 283–353

    Article  Google Scholar 

  2. Hassan G M. Deformation measurement in the presence of discontinuities with digital image correlation: A review. Optics Lasers Eng, 2021, 137: 106394

    Article  Google Scholar 

  3. Berger M, Tagliasacchi A, Seversky L M, et al. A survey of surface reconstruction from point clouds. Comput Graphics Forum, 2017, 36: 301–329

    Article  Google Scholar 

  4. Zhao Z, Zhou X P, Qian Q H. Fracture characterization and permeability prediction by pore scale variables extracted from X-ray CT images of porous geomaterials. Sci China Tech Sci, 2020, 63: 755–767

    Article  Google Scholar 

  5. Sturzenegger M, Stead D. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol, 2009, 106: 163–182

    Article  Google Scholar 

  6. Sturzenegger M, Stead D, Elmo D. Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Eng Geol, 2011, 119: 96–111

    Article  Google Scholar 

  7. Jones R R, Pearce M A, Jacquemyn C, et al. Robust best-fit planes from geospatial data. Geosphere, 2016, 12: 196–202

    Article  Google Scholar 

  8. Castellazzi G, D’Altri A, Bitelli G, et al. From laser scanning to finite element analysis of complex buildings by using a semi-automatic procedure. Sensors, 2015, 15: 18360–18380

    Article  Google Scholar 

  9. Schileo E, Taddei F, Malandrino A, et al. Subject-specific finite element models can accurately predict strain levels in long bones. J BioMech, 2007, 40: 2982–2989

    Article  Google Scholar 

  10. Yang Z J, Li B B, Wu J Y. X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Eng Fract Mech, 2019, 208: 151–170

    Article  Google Scholar 

  11. Kim J S, Chung S Y, Han T S, et al. Modeling of multiple phase solid microstructures and prediction of mechanical behaviors of foamed concrete. Construct Build Mater, 2020, 248: 118637

    Article  Google Scholar 

  12. Saputra A, Talebi H, Tran D, et al. Automatic image-based stress analysis by the scaled boundary finite element method. Int J Numer Meth Engng, 2017, 109: 697–738

    Article  MathSciNet  Google Scholar 

  13. He K, Song C, Ooi E T. A novel scaled boundary finite element formulation with stabilization and its application to image-based elastoplastic analysis. Numer Meth Eng, 2018, 115: 956–985

    Article  MathSciNet  Google Scholar 

  14. Gravenkamp H, Saputra A A, Eisenträger S. Three-dimensional image-based modeling by combining SBFEM and transfinite element shape functions. Comput Mech, 2020, 66: 911–930

    Article  MathSciNet  Google Scholar 

  15. Guo H, Ooi E T, Saputra A A, et al. A quadtree-polygon-based scaled boundary finite element method for image-based mesoscale fracture modelling in concrete. Eng Fract Mech, 2019, 211: 420–441

    Article  Google Scholar 

  16. Duster A, Parvizian J, Yang Z, et al. The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng, 2008, 197: 3768–3782

    Article  MathSciNet  Google Scholar 

  17. Nguyen L, Stoter S, Baum T, et al. Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis of CT-based bone structures. Numer Methods Biomed Eng, 2017, 33: 53

    Article  MathSciNet  Google Scholar 

  18. Kudela L, Kollmannsberger S, Almac U, et al. Direct structural analysis of domains defined by point clouds. Comput Methods Appl Mech Eng, 2020, 358: 112581

    Article  MathSciNet  Google Scholar 

  19. Düster A, Sehlhorst H G, Rank E. Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech, 2012, 50: 413–431

    Article  MathSciNet  Google Scholar 

  20. Belytschko T, Parimi C, Moës N, et al. Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Meth Engng, 2003, 56: 609–635

    Article  Google Scholar 

  21. Daux C, Moës N, Dolbow J, et al. Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Meth Engng, 2000, 48: 1741–1760

    Article  Google Scholar 

  22. Belytschko T, Moës N, Usui S, et al. Arbitrary discontinuities in finite elements. Int J Numer Meth Engng, 2001, 50: 993–1013

    Article  Google Scholar 

  23. Duarte C A, Reno L G, Simone A. A high-order generalized FEM for through-the-thickness branched cracks. Int J Numer Meth Engng, 2007, 72: 325–351

    Article  MathSciNet  Google Scholar 

  24. Kaufmann P, Martin S, Botsch M, et al. Enrichment textures for detailed cutting of shells. ACM Trans Graph, 2009, 28: 1–10

    Article  Google Scholar 

  25. Mousavi S E, Grinspun E, Sukumar N. Harmonic enrichment functions: A unified treatment of multiple, intersecting and branched cracks in the extended finite element method. Int J Numer Meth Engng, 2010, 85: 1306–1322

    Article  MathSciNet  Google Scholar 

  26. Mousavi S E, Grinspun E, Sukumar N. Higher-order extended finite elements with harmonic enrichment functions for complex crack problems. Numer Meth Eng, 2011, 86: 560–574

    Article  Google Scholar 

  27. Wu J. Image-based simulation of complex fracture networks by numerical manifold method. Numer Meth Eng, 2021, 122: 3100–3119

    Article  MathSciNet  Google Scholar 

  28. Wu J. 3D simulation of complex fractures with a simple mesh. Numer Meth Eng, 2022, 123: 3713–3732

    Article  MathSciNet  Google Scholar 

  29. Shi G. Manifold method of material analysis. In: Proceedings of the 9th Army Conference Applied Mathematics and Computing. Minneapolis, 1991. 57–76

  30. Jiang Q, Deng S, Zhou C, et al. Modeling unconfined seepage flow using three-dimensional numerical manifold method. J Hydrodyn, 2010, 22: 554–561

    Article  Google Scholar 

  31. Jiang Q, Zhou C, Li D. A three-dimensional numerical manifold method based on tetrahedral meshes. Comput Struct, 2009, 87: 880–889

    Article  Google Scholar 

  32. Wei W, Jiang Q. A modified numerical manifold method for simulation of finite deformation problem. Appl Math Model, 2017, 48: 673–687

    Article  MathSciNet  Google Scholar 

  33. Wang H, Yang Y, Sun G, et al. A stability analysis of rock slopes using a nonlinear strength reduction numerical manifold method. Comput Geotechnics, 2021, 129: 103864

    Article  Google Scholar 

  34. Yang Y, Sun G, Zheng H. Stability analysis of soil-rock-mixture slopes using the numerical manifold method. Eng Anal Bound Elem, 2019, 109: 153–160

    Article  MathSciNet  Google Scholar 

  35. Wei W, Zhao Q, Jiang Q, et al. A new contact formulation for large frictional sliding and its implement in the explicit numerical manifold method. Rock Mech Rock Eng, 2020, 53: 435–451

    Article  Google Scholar 

  36. Fan L F, Yi X W, Ma G W. Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock mass. Int J Appl Mech, 2013, 5: 1350022

    Article  Google Scholar 

  37. Zhou X, Fan L, Wu Z. Effects of microfracture on wave propagation through rock mass. Int J Geomech, 2017, 17: 04017072

    Article  Google Scholar 

  38. Fan L F, Zhou X F, Wu Z J, et al. Investigation of stress wave induced cracking behavior of underground rock mass by the numerical manifold method. Tunnelling Underground Space Tech, 2019, 92: 103032

    Article  Google Scholar 

  39. Wu Z, Wong L N Y, Fan L. Dynamic study on fracture problems in viscoelastic sedimentary rocks using the numerical manifold method. Rock Mech Rock Eng, 2013, 46: 1415–1427

    Article  Google Scholar 

  40. Zheng H, Xu D. New strategies for some issues of numerical manifold method in simulation of crack propagation. Numer Meth Eng, 2014, 97: 986–1010

    Article  MathSciNet  Google Scholar 

  41. Liu Z, Zheng H. Local refinement with arbitrary irregular meshes and implementation in numerical manifold method. Eng Anal Bound Elem, 2021, 132: 231–247

    Article  MathSciNet  Google Scholar 

  42. Cai Y C, Wu J, Atluri S N. A new implementation of the numerical manifold method (NMM) for the modeling of non-collinear and intersecting cracks. Cmes-Computer Model Eng Sci, 2013, 92: 63–85

    Google Scholar 

  43. Cai Y, Zhuang X, Zhu H. A generalized and efficient method for finite cover generation in the numerical manifold method. Int J Comput Methods, 2013, 10: 1350028

    Article  MathSciNet  Google Scholar 

  44. Cai Y, Wu J. A robust algorithm for the generation of integration cells in numerical manifold method. Int J Impact Eng, 2016, 90: 165–176

    Article  Google Scholar 

  45. Sun L. Particle manifold method (PMM) for multiscale continuous-discontinuous analysis. Dissertation for Doctoral Degree. Lausanne: Swiss Federal Institute of Technology Lausanne, 2012

    Google Scholar 

  46. Lin J S. A mesh-based partition of unity method for discontinuity modeling. Comput Methods Appl Mech Eng, 2003, 192: 1515–1532

    Article  Google Scholar 

  47. Kästner M, Müller S, Goldmann J, et al. Higher-order extended FEM for weak discontinuities-level set representation, quadrature and application to magneto-mechanical problems. Int J Numer Meth Engng, 2013, 93: 1403–1424

    Article  MathSciNet  Google Scholar 

  48. Richardson C L, Hegemann J, Sifakis E, et al. An XFEM method for modeling geometrically elaborate crack propagation in brittle materials. Int J Numer Meth Engng, 2011, 88: 1042–1065

    Article  MathSciNet  Google Scholar 

  49. Yang Y, Sun G, Zheng H, et al. An improved numerical manifold method with multiple layers of mathematical cover systems for the stability analysis of soil-rock-mixture slopes. Eng Geol, 2020, 264: 105373

    Article  Google Scholar 

  50. Augarde C E, Deeks A J. The use of Timoshenko’s exact solution for a cantilever beam in adaptive analysis. Finite Elem Anal Des, 2008, 44: 595–601

    Article  Google Scholar 

  51. Kim J S, Chung S Y, Han T S, et al. Correlation between microstructural characteristics from micro-CT of foamed concrete and mechanical behaviors evaluated by experiments and simulations. Cement Concrete Compos, 2020, 112: 103657

    Article  Google Scholar 

  52. Čermák M, Sysala S, Valdman J. Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems. Appl Math Comput, 2019, 355: 595–614

    MathSciNet  Google Scholar 

  53. Zienkiewicz O C, Zhu J Z. The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. Int J Numer Meth Engng, 1992, 33: 1331–1364

    Article  Google Scholar 

  54. Mohammadmoradi P. A multiscale sandy microstructure. Digital Rocks Portal, 2017

  55. Berg C F. Fontainebleau 3D models. Digital Rocks Portal, 2016

  56. Sobel I, Feldman G. A 3 × 3 isotropic gradient operator for image processing. Pattern Classification and Scene Analysis, 1973: 271–272

  57. Jiao Y Y, Wu Z Y, Zheng F, et al. Parallelization of spherical discontinuous deformation analysis (SDDA) for geotechnical problems based on cloud computing environment. Sci China Tech Sci, 2021, 64: 1971–1980

    Article  Google Scholar 

  58. Xu W J, Wang S, Bilal M. LEM-DEM coupling for slope stability analysis. Sci China Tech Sci, 2020, 63: 329–340

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoWei Ma.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41807277, 42172306 and U1965204), and the Natural Science Foundation of Hebei Province (Grant No. D2019202440).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Ma, G. 3D simulation of image-defined complex internal features using the numerical manifold method. Sci. China Technol. Sci. 67, 1023–1039 (2024). https://doi.org/10.1007/s11431-022-2373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2373-4

Navigation