Log in

Rapid identification of switched systems: A data-driven method in variational framework

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Switched systems, i.e., systems changing the parameter values (even structural forms) abruptly and randomly at arbitrary instants, have been extensively utilized in many fields of modern industries. Rapid identification of switched systems, i.e., capturing all the changing instants and reconstructing the mathematical models rapidly, is of great significance for behavior prediction, performance evaluation and possible control, but is restricted by small data amount available. Here, the rapid identification problem is successfully solved by a data-driven method in variational framework. The data-driven method only requires a small amount of data due to the compact form of the variational description, and is robust to data noise due to the holistic viewpoint. Two numerical examples, i.e., Duffing oscillator and van der Pol system (as two representative systems in nonlinear dynamics), are adopted to illustrate its application, efficiency and robustness to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An J, Yan M, Zhou W, et al. Aircraft dynamic response to variable wing sweep geometry. J Aircraft, 1988, 25: 216–221

    Google Scholar 

  2. Yan B, Li Y, Dai P, et al. Aerodynamic analysis, dynamic modeling, and control of a morphing aircraft. J Aerosp Eng, 2019, 32: 04019058

    Google Scholar 

  3. Wang Y, ** X, Huang Z. Stochastic averaging for quasi-integrable Hamiltonian systems with variable mass. J Appl Mech, 2014, 81: 051003

    Google Scholar 

  4. Cherniakov M. An Introduction to Parametric Digital Filters and Oscillators. Chichester: Wiley, 2003

    Google Scholar 

  5. Brunton S L, Kutz J N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge: Cambridge University Press, 2019

    MATH  Google Scholar 

  6. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: The MIT Press, 2016

    MATH  Google Scholar 

  7. Bishop CM. Pattern Recognition and Machine Learning. New York: Springer-Verlag, 2006

    MATH  Google Scholar 

  8. Chu S R, Shoureshi R, Tenorio M. Neural networks for system identification. IEEE Control Syst Mag, 1990, 10: 31–35

    Google Scholar 

  9. Nelles O. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. New York: Springer-Verlag, 2001

    MATH  Google Scholar 

  10. Chen S, Billings S A, Grant P M. Non-linear system identification using neural networks. Int J Control, 1990, 51: 1191–1214

    MATH  Google Scholar 

  11. Kalman R E. A new approach to linear filtering and prediction problems. J Basic Eng, 1960, 82: 35–45a i]12_Juang J N, Pappa R S. An eigensystem realization algorithm for modal parameter identification and model reduction. J Guidance Control Dyn, 1985, 8: 620–627

    MathSciNet  Google Scholar 

  12. Akaike H. Fitting autoregressive models for prediction. Ann Inst Stat Math, 1969, 21: 243–247

    MathSciNet  MATH  Google Scholar 

  13. Bongard J, Lipson H. Automated reverse engineering of nonlinear dynamical systems. Proc Natl Acad Sci USA, 2007, 104: 9943–9948

    MATH  Google Scholar 

  14. Schmidt M, Lipson H. Distilling free-form natural laws from experimental data. Science, 2009, 324: 81–85

    Google Scholar 

  15. Quade M, Abel M, Shafi K, et al. Prediction of dynamical systems by symbolic regression. Phys Rev E, 2016, 94: 012214

    MathSciNet  Google Scholar 

  16. Brunton S L, Proctor J L, Kutz J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci USA, 2016, 113: 3932–3937

    MathSciNet  MATH  Google Scholar 

  17. Wang W X, Yang R, Lai Y C, et al. Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys Rev Lett, 2011, 106: 154101

    Google Scholar 

  18. Schaeffer H, Tran G, Ward R. Learning dynamical systems and bifurcation via group sparsity..

  19. Mangan N M, Kutz J N, Brunton S L, et al. Model selection for dynamical systems via sparse regression and information criteria. Proc R Soc A, 2017, 473: 20170009

    Article  MathSciNet  Google Scholar 

  20. Quade M, Abel M, Kutz J N, et al. Sparse identification ofnonlinear dynamics for rapid model recovery. Chaos, 2018, 28: 063116

    MathSciNet  Google Scholar 

  21. Kaiser E, Kutz J N, Brunton S L. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc R Soc A, 2018, 474: 20180335

    MathSciNet  MATH  Google Scholar 

  22. Huang Z, Tian Y, Li C, et al. Data-driven automated discovery of variational laws hidden in physical systems. J Mech Phys Solids, 2020, 137: 103871

    MathSciNet  Google Scholar 

  23. Mukhopadhyay S C, Jayasundera K P, Postolache O A. Modern Sensing Technologies. Cham: Springer, 2019

    Google Scholar 

  24. Whittaker E T. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies with an Introduction to the Problem of Three Bodies. London: Cambridge University Press, 1917

    Google Scholar 

  25. Lurie A I. Analytical Mechanics. Berlin: Springer-Verlag, 2002

    MATH  Google Scholar 

  26. Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications. New York: Springer, 2003

    MATH  Google Scholar 

  27. Ott E. Chaos in Dynamical Systems. New York: Cambridge University Press, 2002

    MATH  Google Scholar 

  28. Schöll E, Schuster H G. Handbook of Chaos Control. Weinheim: Wiley-VCH, 2007

    MATH  Google Scholar 

  29. Nayfeh A H, Mook D T. Nonlinear Oscillations. New York: John Wiley, 1979

    MATH  Google Scholar 

  30. Bhaskar R, Nigam A. Qualitative physics using dimensional analysis. Artificial Intell, 1990, 45: 73–111

    Google Scholar 

  31. Lin Y K, Cai G Q. Probabilistic Structural Dynamics: Advanced Theory and Application. New York: McGraw-Hill. 1995

    Google Scholar 

  32. Camacho E F, Bordons C. Model Predictive Control in the Process Industry. London: Springer, 1995

    Google Scholar 

  33. Grüne L, Pannek J. Nonlinear Model Predictive Control: Theory and Algorithms. London: Springer, 2016

    MATH  Google Scholar 

  34. Yang Y, Wang Y, ** X, et al. Stochastic averaging-based direct method for response control of nonlinear vibrating system. J Eng Mech, 2019, 145: 04019015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Additional information

WANG Yong was supported by the National Natural Science Foundation of China (Grant Nos. 11872328 and 11472240). HUANG ZhiLong was supported by the National Natural Science Foundation of China (Grant Nos. 11532011 and 11621062). JIANG HanQing acknowledges Professor GUANG Biao of Zhejiang University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Huang, Z., Wang, Y. et al. Rapid identification of switched systems: A data-driven method in variational framework. Sci. China Technol. Sci. 64, 148–156 (2021). https://doi.org/10.1007/s11431-020-1636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1636-7

Navigation