Log in

Spatial distribution of ion polytropic index joint-modulated by temperature anisotropy and MHD disturbances in the southern high latitude magnetosheath

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Using the Cluster data from 2001 to 2010, we studied spatial distribution of effective ion polytropic index in the southern high latitude magnetosheath, and joint-modulation of ion polytropic index by temperature anisotropy and MHD disturbances. The magnetosheath ions generally experience various polytropic processes with different polytropic index. The median polytropic indexes of magnetosheath ions in the GSE X-Y plane decrease toward the bow shock. Near the magnetopause, the median polytropic indexes are basically between isothermal and adiabatic except in the duskside flank close to the terminator. The analysis of correlation coefficient of perturbed ion number density with parallel magnetic field CC_δnδB|| and ion temperature anisotropy parameter AT, indicates that the dominant MHD disturbance near magnetopause is slow mode with larger ion temperature anisotropy, and there are various modes of MHD disturbances with insignificant ion temperature anisotropy near the bow shock. The polytropic index modulated by slow mode disturbances is generally larger than that modulated by fast mode disturbances, and the larger ion temperature anisotropy, the larger polytropic index. The median polytropic indexes modulated jointly by slow mode disturbances and the strong ion temperature anisotropy can be larger than 1.0, while those modulated by fast mode disturbances and weak temperature anisotropy can be even possibly close to zero. Moreover, because of pronounced dusk-favored asymmetry of ion temperature anisotropy, the median polytropic index in the dawnside flank of the magnetosheath near the terminator is smaller than that in the duskside flank of the magnetosheath. The good correspondence between the distributions of median polytropic indexes and ion temperature anisotropy and MHD disturbances indicates that the ion temperature anisotropy and MHD disturbances determine the distribution of the polytropic index in the magnetosheath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu W L, Tu W C, Li X L, et al. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophys Res Lett, 2016, 43: 1023–1030

    Article  Google Scholar 

  2. Dimmock A P, Nykyri K, Pulkkinen T I. A statistical study of magnetic field fluctuations in the dayside magnetosheath and their dependence on upstream solar wind conditions. J Geophys Res Space Phys, 2014, 119: 6231–6248

    Article  Google Scholar 

  3. Livadiotis G. Superposition of polytropes in the inner heliosheath. Astrophys J Suppl Ser, 2016, 223: 13

    Article  Google Scholar 

  4. Pang X X, Cao J B, Liu W L, et al. Case study of small scale polytropic index in the central plasma sheet. Sci China Earth Sci, 2015, 58: 1993–2001

    Article  Google Scholar 

  5. Pang X X, Cao J B, Liu W L, et al. Polytropic index of central plasma sheet ions based on MHD Bernoulli integral. J Geophys Res Space Phys, 2015, 120: 4736–4747

    Article  Google Scholar 

  6. Pang X X, Cao J B, Ma Y D. Polytropic index of magnetosheath ions based on homogeneous MHD Bernoulli Integral. J Geophys Res Space Phys, 2016, 121: 2349–2359

    Article  Google Scholar 

  7. Crooker N U, Siscoe G L, Geller R B. Persistent pressure anisotropy in the subsonic magnetosheath region. Geophys Res Lett, 1976, 3: 65–68

    Article  Google Scholar 

  8. Hau L N, Phan T D, Sonnerup B U O, et al. Double-polytropic closure in the magnetosheath. Geophys Res Lett, 1993, 20: 2255–2258

    Article  Google Scholar 

  9. Fu H S, Khotyaintsev Y V, Vaivads A, et al. Electric structure of dipolarization front at sub-proton scale. Geophys Res Lett, 2012, 39: L06105

    Article  Google Scholar 

  10. Farris M H, Petrinec S M, Russell C T. The thickness of the magnetosheath: Constraints on the polytropic index. Geophys Res Lett, 1991, 18: 1821–1824

    Article  Google Scholar 

  11. Peredo M, Slavin J A, Mazur E, et al. Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation. J Geophys Res, 1995, 100: 7907–7916

    Article  Google Scholar 

  12. Spreiter J R, Summers A L, Alksne A Y. Hydromagnetic flow around the magnetosphere. Planet Space Sci, 1966, 14: 223–253

    Article  Google Scholar 

  13. Song P, Russell C T, Thomsen M F. Slow mode transition in the frontside magnetosheath. J Geophys Res, 1992, 97: 8295–8305

    Article  Google Scholar 

  14. Meister C V, Maurer C, Hoffmann D H H. Effective polytropic indices of anisotropic planetary magnetosheath plasmas with magnetoacoustic waves. Contrib Plasma Phys, 2011, 51: 639–649

    Article  Google Scholar 

  15. Hau L N. Nonideal MHD effects in the magnetosheath. J Geophys Res, 1996, 101: 2655–2660

    Article  Google Scholar 

  16. Pudovkin M I, Meister C V, Besser B P, et al. The effective polytropic index in a magnetized plasma. J Geophys Res, 1997, 102: 27145–27149

    Article  Google Scholar 

  17. Pudovkin M I, Zaitseva S A, Meister C V, et al. Proton pitch-angle diffusion rate and polytropic index values in the magnetosheath: Model and experiment. Int J Geomagnetism Aeron, 2000, 2: 93–103

    Google Scholar 

  18. Fu H S, Vaivads A, Khotyaintsev Y V, et al. Intermittent energy dissipation by turbulent reconnection. Geophys Res Lett, 2017, 44: 37–43

    Article  Google Scholar 

  19. Kartalev M, Dryer M, Grigorov K, et al. Solar wind polytropic index estimates based on single spacecraft plasma and interplanetary magnetic field measurements. J Geophys Res, 2006, 111: A10107

    Article  Google Scholar 

  20. Nicolaou G, Livadiotis G, Moussas X. Long-term variability of the polytropic index of solar wind protons at 1 AU. Sol Phys, 2014, 289: 1371–1378

    Article  Google Scholar 

  21. Paularena K I, Richardson J D, Kolpak M A, et al. A dawn-dusk density asymmetry in Earth’s magnetosheath. J Geophys Res, 2001, 106: 25377–25394

    Article  Google Scholar 

  22. Longmore M, Schwartz S J, Geach J, et al. Dawn-dusk asymmetries and sub-Alfvénic flow in the high and low latitude magnetosheath. Ann Geophys, 2005, 23: 3351–3364

    Article  Google Scholar 

  23. Walsh B M, Sibeck D G, Wang Y, et al. Dawn-dusk asymmetries in the Earth’s magnetosheath. J Geophys Res, 2012, 117: A12211

    Google Scholar 

  24. Dimmock A P, Nykyri K. The statistical map** of magnetosheath plasma properties based on THEMIS measurements in the magnetosheath interplanetary medium reference frame. J Geophys Res Space Phys, 2013, 118: 4963–4976

    Article  Google Scholar 

  25. Fu H S, Khotyaintsev Y V, André M, et al. Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophys Res Lett, 2011, 38: L16104

    Google Scholar 

  26. Fu H S, Khotyaintsev Y V, Vaivads A, et al. Occurrence rate of earthward-propagating dipolarization fronts. Geophys Res Lett, 2012, 39: L10101

    Article  Google Scholar 

  27. Fu H S, Khotyaintsev Y V, Vaivads A, et al. Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview. J Geophys Res, 2012, 117: A12221

    Google Scholar 

  28. Hadid L Z, Sahraoui F, Kiyani K H, et al. Nature of the MHD and kinetic scale turbulence in the magnetosheath of saturn: Cassini observations. Astrophys J, 2015, 813: L29

    Article  Google Scholar 

  29. Hill P, Paschmann G, Treumann R A, et al. Plasma and magnetic field behavior across the magnetosheath near local noon. J Geophys Res, 1995, 100: 9575–9584

    Article  Google Scholar 

  30. Kaufmann R L, Horng J T, Wolfe A. Large-amplitude hydromagnetic waves in the inner magnetosheath. J Geophys Res, 1970, 75: 4666–4676

    Article  Google Scholar 

  31. Wang T Y, Cao J B, Fu H S, et al. Compressible turbulence with slow-mode waves observed in the bursty bulk flow of plasma sheet. Geophys Res Lett, 2016, 43: 1854–1861

    Article  Google Scholar 

  32. Cao J B, Fu H S, Zhang T L, et al. Direct evidence of solar wind deceleration in the foreshock of the Earth. J Geophys Res, 2009, 114: A02207

    Google Scholar 

  33. Eastwood J P, Balogh A, Dunlop M W, et al. Cluster observations of fast magnetosonic waves in the terrestrial foreshock. Geophys Res Lett, 2002, 29: 3-1–3-4

    Article  Google Scholar 

  34. Fu H S, Cao J B, Yang B, et al. ULF waves associated with solar wind deceleration in the Earth’s foreshock. Chin Phys Lett, 2009, 26: 119402

    Article  Google Scholar 

  35. Leonovich A S, Mishin V V, Cao J B. Penetration of magnetosonic waves into the magnetosphere: Influence of a transition layer. Ann Geophys, 2003, 21: 1083–1093

    Article  Google Scholar 

  36. Dimmock A P, Osmane A, Pulkkinen T I, et al. A statistical study of the dawn-dusk asymmetry of ion temperature anisotropy and mirror mode occurrence in the terrestrial dayside magnetosheath using THEMIS data. J Geophys Res Space Phys, 2015, 120: 5489–5503

    Article  Google Scholar 

  37. Belmont G, Mazelle C. Polytropic indices in collisionless plasmas: Theory and measurements. J Geophys Res, 1992, 97: 8327–8336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **Bin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, X., Cao, J., Deng, Z. et al. Spatial distribution of ion polytropic index joint-modulated by temperature anisotropy and MHD disturbances in the southern high latitude magnetosheath. Sci. China Technol. Sci. 61, 381–388 (2018). https://doi.org/10.1007/s11431-017-9095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9095-x

Keywords

Navigation