Log in

Nanowear pretreatment of AFM tips for reasonable friction force

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In a nanoscale friction test, wear of an atomic force microscope (AFM) tip is inevitable. The shape of the worn tip influences the friction force measured. In order to eliminate the influence, nanowear pretreatment should be conducted for the AFM tip. In our study, pretreatment of three kinds of tips, i.e. Si3N4 tip, Si tip and silica colloidal tip, was performed using AFM. The results show that the shape of the tips changes with the increase of sliding distance, which leads to the variety of friction force. Whereas, when the tip gets blunt, the shape of tip tends to become stable and the friction force becomes stable correspondingly. To a certain degree, it reveals that the pretreated tips can be applied to study the friction force of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binnig G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 9: 930–933

    Article  Google Scholar 

  2. Yan Y D, Zhao X S, Hu Z J, et al. Effects of atomic force microscope silicon tip geometry on Large-Scale nanomechanical modification of the polymer surface. Tribol Tran, 2012, 6: 846–853

    Article  Google Scholar 

  3. Ogino T, Nishimura S, Shirakashi J. Scratch nanolithography on Si surface using scanning probe microscopy: Influence of scanning parameters on groove size. Jap J Appl Phys, 2008, 12: 712–714

    Article  Google Scholar 

  4. Ogino T, Nishimura S, Shirakashi J. Sub-20 nm scratch nanolithography for Si using scanning probe microscopy. Jap J Appl Phys, 2007, 10A: 6908–6910

    Article  Google Scholar 

  5. Yan Y D, Sun T, Dong S. Study on effects of tip geometry on AFM nanoscratching tests. Wear, 2007, 3–4: 477–483

    Article  Google Scholar 

  6. Hsu J H, Lin C Y, Lin H N. Fabrication of metallic nanostructures by atomic force microscopy nanomachining and lift-off process. J Vac Sci Technol B, 2004, 6: 2768–2771

    Article  Google Scholar 

  7. Bhushan B, Palacio M, Kwak K J. Thermally-treated Pt-coated silicon AFM tips for wear resistance in ferroelectric data storage. Acta Mater, 2008, 16: 4233–4241

    Article  Google Scholar 

  8. Tao Z, Bhushan B. Surface modification of AFM silicon probes for adhesion and wear reduction. Tribol Lett, 2006, 1: 1–16

    Article  MATH  Google Scholar 

  9. Tao Z H, Bhushan B. Surface modification of AFM Si3N4 probes for adhesion/friction reduction and imaging improvement. J Tribol-T Asme, 2006, 4: 865–875

    Article  Google Scholar 

  10. Qian L M, Luo J B, Wen S W, et al. The experimental rules of mica as a reference sample of AFM/FFM measurement. Chin Sci Bull, 2001, 4: 349–352

    Article  Google Scholar 

  11. Vahdat V, Grierson D S, Turner K T, et al. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes. ACS Nano, 2013, 4: 3221–3235

    Article  Google Scholar 

  12. Chung K H, Kim D E. Fundamental investigation of micro wear rate using an atomic force microscope. Tribol Lett, 2003, 2: 135–144

    Article  Google Scholar 

  13. Qian L M, **ao X D, Wen S Z. Tip in situ chemical modification and its effects on tribological measurements. Langmuir, 2000, 2: 662–670

    Article  Google Scholar 

  14. Chung K H, Kim D E. Wear characteristics of diamond-coated atomic force microscope probe. Ultramicroscopy, 2007, 1: 1–10

    Article  Google Scholar 

  15. Fletcher P C, Felts J R, Dai Z T, et al. Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing. ACS Nano, 2010, 6: 3338–3344

    Article  Google Scholar 

  16. Liu J, Grierson D S, Moldovan N, et al. Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes. Samll, 2010, 10: 1140–1149

    Google Scholar 

  17. Smirnov W, Kriele A, Hoffmann R, et al. Diamond-modified AFM probes: From diamond nanowires to atomic force microscopy-integrated Boron-doped diamond electrodes. Anal Chem, 2011, 12: 4936–4941

    Article  Google Scholar 

  18. Bhaskaran H, Sebastian A, Despont M. Nanoscale PtSi tips for conducting probe technologies. IEEE Tran Nanotech, 2009, 1: 128–131

    Article  Google Scholar 

  19. Bhaskaran H, Gotsmann B, Sebastian A, et al. Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat Nanotech, 2010, 3: 181–185

    Article  Google Scholar 

  20. Gou L Q, Shi X L, Zhao X M, et al. Composite diamond-DLC coated nanoprobe tips for wear resistance and adhesion reduction. Surf Coat Tech, 2012, 19-20: 4099–4105

    Article  Google Scholar 

  21. Martin-Olmos C, Rasool H M, Weiller B H, et al. Graphene MEMS: AFM probe performance improvement. ACS Nano, 2013, 5: 4164–4170

    Article  Google Scholar 

  22. Butt H J, Jaschke M. Calculation of thermal noise in atomic-force microscopy. Nanotechnology, 1995, 1: 1–7

    Article  Google Scholar 

  23. van Zwol P J, Palasantzas G, van de Schootbrugge M, et al. Roughness of microspheres for force measurements. Langmuir, 2008, 14: 7528–7531

    Article  Google Scholar 

  24. Neto C, Craig V. Colloid probe characterization: Radius and roughness determination. Langmuir, 2001, 7: 2097–2099

    Article  Google Scholar 

  25. Bloo M L, Haitjema H, Pril W O. Deformation and wear of pyramidal, silicon-nitride AFM tips scanning micrometre-size features in contact mode. Measurement, 1999, 3: 203–211

    Article  Google Scholar 

  26. Vila M, Caceres D, Prieto C. Mechanical properties of sputtered silicon nitride thin films. J Appl Phys, 2003, 12: 7868–7873

    Article  Google Scholar 

  27. Bhushan B, Kulkarni A V. Effect of normal load on microscale friction measurements. Thin Solid Films, 1996, 1–2: 49–56

    Article  Google Scholar 

  28. Yang S, Zhang H, Hsu S M. Correction of random surface roughness on colloidal probes in measuring adhesion. Langmuir, 2007, 3: 1195–1202

    Article  Google Scholar 

  29. Bhushan B, Sundararajan S. Micro/Nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater, 1998, 11: 3793–3804

    Article  Google Scholar 

  30. Chai Z M, Liu Y H, Lu X C, et al. Reducing adhesion force by means of atomic layer deposition of ZnO films with nanoscale surface roughness. ACS Appl Mater Interfaces, 2014, 5: 3325–3330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **nChun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Z., Liu, Y., Wang, W. et al. Nanowear pretreatment of AFM tips for reasonable friction force. Sci. China Technol. Sci. 57, 2241–2248 (2014). https://doi.org/10.1007/s11431-014-5629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5629-7

Keywords

Navigation