Log in

Unraveling the Cenozoic carbon cycle by reconstructing carbonate compensation depth (CCD)

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Carbonate Compensation Depth (CCD) refers to the depth within the ocean where the production and dissolution rates of carbonates reach equilibrium, widely likened to the oceanic calcareous ‘snowline’. The reconstruction of deep-time CCD has significant implications for understanding ocean circulation, seawater chemical conditions, sediment distribution, and the surface carbon cycle. This paper critically reviews the methods for CCD reconstruction, summarizes the driving mechanisms of the Cenozoic CCD evolution and its association with the carbon cycle, and offers insights into future directions for CCD research. CCD reconstruction has evolved over the past half century from early qualitative to quantitative methods. These methodological improvements have markedly improved the accuracy and resolution of CCD. Existing studies have indicated a general trend of the CCD deepening across major ocean basins since the Cenozoic, interspersed with a minor shallowing phase during the mid-Miocene. The variations in the CCD are primarily influenced by factors such as ocean productivity, weathering, and shelf-basin partitioning. During climate events such as the Paleocene-Eocene Thermal Maximum, the CCD exhibits pulselike fluctuations. Future research should focus on precision and quantification while integrating model simulations to further explore the correlations and response mechanisms between the CCD and the paleoclimate as well as the carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson M, Erez J. 2017. The onset of modern-like Atlantic meridional overturning circulation at the Eocene-Oligocene transition: Evidence, causes, and possible implications for global cooling. Geochem Geophys Geosyst, 18: 2177–2199

    CAS  Google Scholar 

  • Basak C, Martin E E. 2013. Antarctic weathering and carbonate compensation at the Eocene-Oligocene transition. Nat Geosci, 6: 121–124

    CAS  Google Scholar 

  • Berger W H. 1972. Deep sea carbonates: Dissolution facies and age-depth constancy. Nature, 236: 392–395

    Google Scholar 

  • Berner E K, Berner R A. 2012. Global Environment: Water, Air and Geochemical Cycles. Princeton: Princeton University Press

    Google Scholar 

  • Berner R A, Lasaga A C, Garrels R M. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci, 283: 641–683

    CAS  Google Scholar 

  • Boscolo-Galazzo F, Crichton K A, Ridgwell A, Mawbey E M, Wade B S, Pearson P N. 2021. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science, 371: 1148–1152

    CAS  Google Scholar 

  • Boss S K, Wilkinson B H. 1991. Planktogenic/Eustatic control on cratonic/oceanic carbonate accumulation. J Geol, 99: 497–513

    Google Scholar 

  • Boudreau B P, Luo Y M. 2017. Retrodiction of secular variations in deep-sea CaCO3 burial during the Cenozoic. Earth Planet Sci Lett, 474: 1–12

    CAS  Google Scholar 

  • Boudreau B P, Middelburg J J, Hofmann A F, Meysman F J R. 2010a. Ongoing transients in carbonate compensation. Glob Biogeochem Cycle, 24: GB4010

    Google Scholar 

  • Boudreau B P, Middelburg J J, Meysman F J R. 2010b. Carbonate compensation dynamics. Geophys Res Lett, 37: L03603

    Google Scholar 

  • Boudreau B P, Middelburg J J, Luo Y M. 2018. The role of calcification in carbonate compensation. Nat Geosci, 11: 894–900

    CAS  Google Scholar 

  • Boyle E A. 1988. The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. J Geophys Res, 93: 15701–15714

    Google Scholar 

  • Bralower T J, Kump L R, Self-Trail J M, Robinson M M, Lyons S, Babila T, Ballaron E, Freeman K H, Hajek E, Rush W, Zachos J C. 2018. Evidence for shelf acidification during the onset of the Paleocene-Eocene Thermal Maximum. Paleoceanog Paleoclimatol, 33: 1408–1426

    Google Scholar 

  • Braun J. 2010. The many surface expressions of mantle dynamics. Nat Geosci, 3: 825–833

    CAS  Google Scholar 

  • Brennan S T, Lowenstein T K, Cendon D I. 2013. The major-ion composition of Cenozoic seawater: The past 36 million years from fluid inclusions in marine halite. Am J Sci, 313: 713–775

    CAS  Google Scholar 

  • Broecker W S, Peng T H. 1987. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob Biogeochem Cycle, 1: 15–29

    CAS  Google Scholar 

  • Broecker W S, Peng T H. 1989. The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis. Glob Biogeochem Cycle, 3: 215–239

    Google Scholar 

  • Campbell S M, Moucha R, Derry L A, Raymo M E. 2018. Effects of dynamic topography on the Cenozoic carbonate compensation depth. Geochem Geophys Geosyst, 19: 1025–1034

    Google Scholar 

  • Cao W C, Zahirovic S, Flament N, Williams S, Golonka J, Müller R D. 2017. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences, 14: 5425–5439

    Google Scholar 

  • Carmichael M J, Inglis G N, Badger M P S, Naafs B D A, Behrooz L, Remmelzwaal S, Monteiro F M, Rohrssen M, Farnsworth A, Buss H L, Dickson A J, Valdes P J, Lunt D J, Pancost R D. 2017. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum. Glob Planet Change, 157: 114–138

    Google Scholar 

  • Chikamoto M O, Matsumoto K, Ridgwell A. 2008. Response of deep-sea CaCO3 sedimentation to Atlantic meridional overturning circulation shutdown. J Geophys Res, 113: G03017

    Google Scholar 

  • Ciais P, Tagliabue A, Cuntz M, Bopp L, Scholze M, Hoffmann G, Lourantou A, Harrison S P, Prentice I C, Kelley D I, Koven C, Piao S L. 2012. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nat Geosci, 5: 74–79

    CAS  Google Scholar 

  • Coggon R M, Teagle D A H, Smith-Duque C E, Alt J C, Cooper M J. 2010. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science, 327: 1114–1117

    CAS  Google Scholar 

  • Coxall H K, Wilson P A, Pälike H, Lear C H, Backman J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433: 53–57

    CAS  Google Scholar 

  • Crichton K A, Wilson J D, Ridgwell A, Boscolo-Galazzo F, John E H, Wade B S, Pearson P N. 2023. What the geological past can tell us about the future of the ocean’s twilight zone. Nat Commun, 14: 2376

    CAS  Google Scholar 

  • Crosby A G, McKenzie D. 2009. An analysis ofyoung ocean depth, gravity and global residual topography. Geophys J Int, 178: 1198–1219

    Google Scholar 

  • Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 298: 1–13

    CAS  Google Scholar 

  • Delaney M L, Boyle E A. 1988. Tertiary paleoceanic chemical variability: Unintended consequences of simple geochemical models. Paleoceanography, 3: 137–156

    Google Scholar 

  • Derry L A. 2022. Carbonate weathering, CO2 redistribution, and Neogene CCD and pCO2 evolution. Earth Planet Sci Lett, 597: 117801

    CAS  Google Scholar 

  • Dickens G R, Castillo M M, Walker J C G. 1997. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25: 259–262

    CAS  Google Scholar 

  • Dutkiewicz A, Müller R D, Cannon J, Vaughan S, Zahirovic S. 2019. Sequestration and subduction of deep-sea carbonate in the global ocean since the early Cretaceous. Geology, 47: 91–94

    CAS  Google Scholar 

  • Dutkiewicz A, Müller R D. 2021. The carbonate compensation depth in the South Atlantic Ocean since the late Cretaceous. Geology, 49: 873–878

    CAS  Google Scholar 

  • Dutkiewicz A, Müller R D. 2022. The history of Cenozoic carbonate flux in the Atlantic Ocean constrained by multiple regional Carbonate Compensation Depth reconstructions. Geochem Geophys Geosyst, 23: e2022GC010667

    CAS  Google Scholar 

  • Edgar K M, Wilson P A, Sexton P F, Suganuma Y. 2007. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature, 448: 908–911

    CAS  Google Scholar 

  • Edmond J M. 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258: 1594–1597

    CAS  Google Scholar 

  • Elsworth G, Galbraith E, Halverson G, Yang S M. 2017. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nat Geosci, 10: 213–216

    CAS  Google Scholar 

  • Florindo F, Farmer R K, Harwood D M, Cody R D, Levy R, Bohaty S M, Carter L, Winkler A. 2013. Paleomagnetism and biostratigraphy of sediments from Southern Ocean ODP Site 744 (southern Kerguelen Plateau): Implications for early-to-middle Miocene climate in Antarc- tica. Glob Planet Change, 110: 434–454

    Google Scholar 

  • Greene S E, Ridgwell A, Kirtland Turner S, Schmidt D N, Pälike H, Thomas E, Greene L K, Hoogakker B A A. 2019. Early Cenozoic decoupling of climate and carbonate compensation depth trends. Paleoceanog Paleoclimatol, 34: 930–945

    CAS  Google Scholar 

  • Harding I C, Charles A J, Marshall J E A, Pälike H, Roberts A P, Wilson P A, Jarvis E, Thorne R, Morris E, Moremon R, Pearce R B, Akbari S. 2011. Sea-level and salinity fluctuations during the Paleocene-Eocene thermal Maximum in Arctic Spitsbergen. Earth Planet Sci Lett, 303: 97–107

    CAS  Google Scholar 

  • Hilton R G, West A J. 2020. Mountains, erosion and the carbon cycle. Nat Rev Earth Environ, 1: 284–299

    CAS  Google Scholar 

  • Horita J, Zimmermann H, Holland H D. 2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporite. Geochim Cosmochim Acta, 66: 3733–3756

    CAS  Google Scholar 

  • Hsü K J, Wright R. 1985. History of calcite dissolution of the south Atlantic Ocean. In: Hsü K J, Weissert H J, eds. South Atlantic Paleoceanography. Cambridge: Cambridge University Press. 149–187

    Google Scholar 

  • Hu Z W, Li Y, Li B K, Huang S J, Han X. 2015. Review and progress of seawater strontium isotope composition studies since the Phanerozoic (in Chinese). Adv Earth Sci, 30: 37–49

    CAS  Google Scholar 

  • Hutchinson D K, Coxall H K, Lunt D J, Steinthorsdottir M, de Boer A M, Baatsen M, von der Heydt A, Huber M, Kennedy-Asser AT, Kunzmann L, Ladant J B, Lear C H, Moraweck K, Pearson P N, Piga E, Pound M J, Salzmann U, Scher H D, Sijp W P, Śliwińska K K, Wilson P A, Zhang Z S. 2021. The Eocene-Oligocene transition: A review of marine and terrestrial proxy data, models and model-data comparisons. Clim Past, 17: 269–315

    Google Scholar 

  • Isson T T, Planavsky N J, Coogan L A, Stewart E M, Ague J J, Bolton E W, Zhang S, McKenzie N R, Kump L R. 2020. Evolution of the global carbon cycle and climate regulation on Earth. Glob Biogeochem Cycle, 34: e2018GB006061

    CAS  Google Scholar 

  • Jia E H, Song H J, Lei Y, Luo M G, Jiang S J. 2022. Evolution of the marine biological pump and the plankton revolution at the Paleozoic-Mesozoic transition (in Chinese). Chin Sci Bull, 67: 1660–1676

    Google Scholar 

  • ** S M, Kemp D B, Yin R S, Sun R Y, Shen J, Jolley D W, Vieira M, Huang C J. 2022. Mercury isotope evidence for protracted North Atlantic magmatism during the Paleocene-Eocene Thermal Maximum. Earth Planet Sci Lett, 602: 117926

    Google Scholar 

  • John C M, Bohaty S M, Zachos J C, Sluijs A, Gibbs S, Brinkhuis H, Bralower T J. 2008. North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography, 23: PA2217

    Google Scholar 

  • Jones S M, Hoggett M, Greene S E, Dunkley Jones T. 2019. Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change. Nat Commun, 10: 5547

    CAS  Google Scholar 

  • Katz M E, Cramer B S, Toggweiler J R, Esmay G, Liu C J, Miller K G, Rosenthal Y, Wade B S, Wright J D. 2011. Impact of Antarctic circumpolar current development on late Paleogene ocean structure. Science, 332: 1076–1079

    CAS  Google Scholar 

  • Kelly D C, Nielsen T M J, McCarren H K, Zachos J C, Röhl U. 2010. Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: Implications for carbon cycling during the Paleocene-Eocene thermal maximum. Palaeogeogr Palaeoclimatol Palaeoecol, 293: 30–40

    Google Scholar 

  • Kelly D C, Nielsen T M J, Schellenberg S A. 2012. Carbonate saturation dynamics during the Paleocene-Eocene thermal maximum: Bathyal constraints from ODP sites 689 and 690 in the Weddell Sea (South Atlantic). Mar Geol, 303–306: 75–86

    Google Scholar 

  • Kerr J, Rickaby R, Yu J M, Elderfield H, Sadekov A Y. 2017. The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles. Earth Planet Sci Lett, 471: 42–53

    CAS  Google Scholar 

  • Komar N, Zeebe R E. 2021. Reconciling atmospheric CO2, weathering, and calcite compensation depth across the Cenozoic. Sci Adv, 7: eabd4876

    Google Scholar 

  • Komar N, Zeebe R E, Dickens G R. 2013. Understanding long-term carbon cycle trends: The late Paleocene through the early Eocene. Paleoceanography, 28: 650–662

    Google Scholar 

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S. 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys, 45: RG2001

    Google Scholar 

  • Lagabrielle Y, Goddéris Y, Donnadieu Y, Malavieille J, Suarez M. 2009. The tectonic history of Drake Passage and its possible impacts on global climate. Earth Planet Sci Lett, 279: 197–211

    CAS  Google Scholar 

  • Lear C H, Elderfield H, Wilson P A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287: 269–272

    CAS  Google Scholar 

  • Lear C H, Elderfield H, Wilson P A. 2003. A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes. Earth Planet Sci Lett, 208: 69–84

    CAS  Google Scholar 

  • Lenton T M, Britton C. 2006. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Glob Biogeochem Cycle, 20: GB3009

    Google Scholar 

  • Leon-Rodriguez L, Dickens G R. 2010. Constraints on ocean acidification associated with rapid and massive carbon injections: The early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean. Palaeogeogr Palaeoclimatol Palaeoecol, 298: 409–420

    Google Scholar 

  • Li S L, Goldstein S L, Raymo M E. 2021. Neogene continental denudation and the beryllium conundrum. Proc Natl Acad Sci USA, 118: e2026456118

    Google Scholar 

  • Liu X H, Xu Q, Ding L. 2016. Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau. Sci China-Earth Sci, 59: 2105–2120

    CAS  Google Scholar 

  • Liu Y S, Chen C F, He D T, Chen W. 2019. Deep carbon cycle in subduction zones. Sci China Earth Sci, 62: 1764–1782

    CAS  Google Scholar 

  • Lowenstein T K, Hardie L A, Timofeeff M N, Demicco R V. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31: 857–860

    CAS  Google Scholar 

  • Luo Y M, Boudreau B P, Dickens G R, Sluijs A, Middelburg J J. 2016. An alternative model for CaCO3 over-shooting during the PETM: Biological carbonate compensation. Earth Planet Sci Lett, 453: 223–233

    CAS  Google Scholar 

  • Lyle M. 2003. Neogene carbonate burial in the Pacific Ocean. Paleoceanography, 18: 1059

    Google Scholar 

  • Lyle M, Barron J, Bralower T J, Huber M, Olivarez Lyle A, Ravelo A C, Rea D K, Wilson P A. 2008. Pacific ocean and Cenozoic evolution of climate. Rev Geophys, 46: RG2002

    Google Scholar 

  • März C, Schnetger B, Brumsack H J. 2010. Paleoenvironmental implications of Cenozoic sediments from the central Arctic Ocean (IODP Expedition 302) using inorganic geochemistry. Paleoceanography, 25: PA3206

    Google Scholar 

  • Merico A, Tyrrell T, Wilson P A. 2008. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall. Nature, 452: 979–982

    CAS  Google Scholar 

  • Miller K G, Wright J D, Fairbanks R G. 1991. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J Geophys Res, 96: 6829–6848

    Google Scholar 

  • Misra S, Froelich P N. 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science, 335: 818–823

    CAS  Google Scholar 

  • Müller R D, Dutkiewicz A. 2018. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci Adv, 4: eaaq0500

    Google Scholar 

  • Müller R D, Seton M, Zahirovic S, Williams S E, Matthews K J, Wright N M, Shephard G E, Maloney K T, Barnett-Moore N, Hosseinpour M, Bower D J, Cannon J. 2016. Ocean basin evolution and global-scale plate reorganization events since pangea breakup. Annu Rev Earth Planet Sci, 44: 107–138

    Google Scholar 

  • Müller R D, Cannon J, Williams S, Dutkiewicz A. 2018. PyBacktrack 1.0: A tool for reconstructing paleobathymetry on oceanic and continental crust. Geochem Geophys Geosyst, 19: 1898–1909

    Google Scholar 

  • Opdyke B N, Wilkinson B H. 1988. Surface area control of shallow cratonic to deep marine carbonate accumulation. Paleoceanography, 3: 685–703

    Google Scholar 

  • Pälike H, Lyle M W, Nishi H, Raffi I, Ridgwell A, Gamage K, Klaus A, Acton G, Anderson L, Backman J, Baldauf J, Beltran C, Bohaty S M, Bown P, Busch W, Channell J E T, Chun C O J, Delaney M, Dewangan P, Dunkley Jones T, Edgar K M, Evans H, Fitch P, Foster G L, Gussone N, Hasegawa H, Hathorne E C, Hayashi H, Herrle J O, Holbourn A, Hovan S, Hyeong K, Iijima K, Ito T, Kamikuri S, Kimoto K, Kuroda J, Leon-Rodriguez L, Malinverno A, Moore Jr T C, Murphy B H, Murphy D P, Nakamura H, Ogane K, Ohneiser C, Richter C, Robinson R, Rohling E J, Romero O, Sawada K, Scher H, Schneider L, Sluijs A, Takata H, Tian J, Tsujimoto A, Wade B S, Westerhold T, Wilkens R, Williams T, Wilson P A, Yamamoto Y, Yamamoto S, Yamazaki T, Zeebe R E. 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 488: 609–614

    Google Scholar 

  • Paytan A, Griffith E M, Eisenhauer A, Hain M P, Wallmann K, Ridgwell A. 2021. A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science, 371: 1346–1350

    CAS  Google Scholar 

  • Pekar S F, Christie-Blick N, Kominz M A, Miller K G. 2002. Calibration between eustatic estimates from backstrip** and oxygen isotopic records for the Oligocene. Geology, 30: 903–906

    CAS  Google Scholar 

  • Penman D E, Zachos J C. 2018. New constraints on massive carbon release and recovery processes during the Paleocene-Eocene Thermal Maximum. Environ Res Lett, 13: 105008

    Google Scholar 

  • Penman D E, Turner S K, Sexton P F, Norris R D, Dickson A J, Boulila S, Ridgwell A, Zeebe R E, Zachos J C, Cameron A, Westerhold T, Röhl U. 2016. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene Thermal Maximum. Nat Geosci, 9: 575–580

    CAS  Google Scholar 

  • Piedrahita V A, Zhao X, Roberts A P, Rohling E J, Heslop D, Galeotti S, Rodriguez-Sanz L, Florindo F, Grant K M. 2023. Accelerated light carbon sequestration following late Paleocene-early Eocene carbon cycle perturbations. Earth Planet Sci Lett, 604: 117992

    CAS  Google Scholar 

  • Rae J W B, Zhang Y G, Liu X Q, Foster G L, Stoll H M, Whiteford RDM. 2021. Atmospheric CO2 over the past 66 million years from marine archives. Annu Rev Earth Planet Sci, 49: 609–641

    CAS  Google Scholar 

  • Raymo M E, Ruddiman W F, Froelich P N. 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16: 649

    CAS  Google Scholar 

  • Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122

    CAS  Google Scholar 

  • Ridgwell A. 2005. A mid Mesozoic revolution in the regulation of ocean chemistry. Mar Geol, 217: 339–357

    CAS  Google Scholar 

  • Ridgwell A, Zeebe R E. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett, 234: 299–315

    CAS  Google Scholar 

  • Ridgwell A, Hargreaves J C. 2007. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob Biogeochem Cycle, 21: GB2008

    Google Scholar 

  • Sijp W P, England M H. 2004. Effect of the Drake Passage throughflow on global climate. J Phys Oceanogr, 34: 1254–1266

    Google Scholar 

  • Sijp W P, England M H, Huber M. 2011. Effect of the deepening of the Tasman Gateway on the global ocean. Paleoceanography, 26: PA4207A

    Google Scholar 

  • Sijp W P, von der Heydt A S, Dijkstra H A, Flögel S, Douglas P M J, Bijl P K. 2014. The role of ocean gateways on cooling climate on long time scales. Glob Planet Change, 119: 1–22

    Google Scholar 

  • Slotnick B S, Lauretano V, Backman J, Dickens G R, Sluijs A, Lourens L. 2015. Early Paleogene variations in the calcite compensation depth: New constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean. Clim Past, 11: 473–493

    Google Scholar 

  • Stein R. 2019. The late Mesozoic-Cenozoic Arctic Ocean climate and sea ice history: A challenge for past and future scientific ocean drilling. Paleoceanog Paleoclimatol, 34: 1851–1894

    Google Scholar 

  • Stein C A, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359: 123–129

    Google Scholar 

  • Stickley C E, Brinkhuis H, Schellenberg S A, Sluijs A, Röhl U, Fuller M, Grauert M, Huber M, Warnaar J, Williams G L. 2004. Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19: PA4027

    Google Scholar 

  • Sulpis O, Boudreau B P, Mucci A, Jenkins C, Trossman D S, Arbic B K, Key R M. 2018. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proc Natl Acad Sci USA, 115: 11700–11705

    CAS  Google Scholar 

  • Taylor V E, Westerhold T, Bohaty S M, Backman J, Dunkley Jones T, Edgar K M, Egan K E, Lyle M, Pälike H, Röhl U, Zachos J, Wilson P A. 2023. Transient shoaling, over-deepening and settling of the calcite compensation depth at the Eocene-Oligocene Transition. Paleoceanog Paleoclimatol, 38: e2022PA004493

    Google Scholar 

  • Timofeeff M N, Lowenstein T K, da Silva M A M, Harris N B. 2006. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochim Cosmochim Acta, 70: 1977–1994

    CAS  Google Scholar 

  • Toggweiler J R, Bjornsson H. 2000. Drake passage and palaeoclimate. J Quat Sci, 15: 319–328

    Google Scholar 

  • Tyrrell T. 2007. Calcium carbonate cycling in future oceans and its influence on future climates. J Plankton Res, 30: 141–156

    Google Scholar 

  • Tyrrell T, Zeebe R E. 2004. History of carbonate ion concentration over the last 100 million years. Geochim Cosmochim Acta, 68: 3521–3530

    CAS  Google Scholar 

  • Uchikawa J, Zeebe R E. 2008. Influence ofterrestrial weathering on ocean acidification and the next glacial inception. Geophys Res Lett, 35: L23608

    Google Scholar 

  • van Andel T H. 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet Sci Lett, 26: 187–194

    Google Scholar 

  • van Andel T H, Thiede J, Sclater J G, Hay W W. 1977. Depositional history of the South Atlantic Ocean during the last 125 million years. J Geol, 85: 651–698

    CAS  Google Scholar 

  • Wade B S, O’Neill J F, Phujareanchaiwon C, Ali I, Lyle M, Witkowski J. 2020. Evolution of deep-sea sediments across the Paleocene-Eocene and Eocene-Oligocene boundaries. Earth-Sci Rev, 211: 103403

    CAS  Google Scholar 

  • Walker J C G, Hays P B, Kasting J F. 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res, 86: 9776–9782

    CAS  Google Scholar 

  • Wang P X. 2006. Geological evolution of oceanic carbon cycling (in Chinese). Prog Nat Sci, 11: 1361–1370

    Google Scholar 

  • White A F, Blum A E. 1995. Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta, 59: 1729–1747

    CAS  Google Scholar 

  • Winguth A M E, Thomas E, Winguth C. 2012. Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene-Eocene Thermal Maximum: Implications for the benthic extinction. Geology, 40: 263–266

    CAS  Google Scholar 

  • Yan J X, Wu M. 2006. Advances in the study of Phanerozoic seawater composition, carbonate deposition, and biological evolution systems (in Chinese). Earth Science—J China Univ Geosci, 25: 1–7

    CAS  Google Scholar 

  • Zachos J C, Quinn T M, Salamy K A. 1996. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography, 11: 251–266

    Google Scholar 

  • Zachos J C, Rohl U, Schellenberg S A, Sluijs A, Hodell D A, Kelly D C, Thomas E, Nicolo M, Raffi I, Lourens L J, McCarren H, Kroon D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science, 308: 1611–1615

    CAS  Google Scholar 

  • Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279–283

    CAS  Google Scholar 

  • Zeebe R E. 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci, 40: 141–165

    CAS  Google Scholar 

  • Zeebe R E, Westbroek P. 2003. A simple model for the CaCO3 saturation state of the ocean: The “Strangelove,” the “Neritan,” and the “Cretan” Ocean. Geochem Geophys Geosyst, 4: 2003GC000538

    Google Scholar 

  • Zeebe R E, Tyrrell T. 2019. History ofcarbonate ion concentration over the last 100 million years II: Revised calculations and new data. Geochim Cosmochim Acta, 257: 373–392

    CAS  Google Scholar 

  • Zhong S J, Ritzwoller M, Shapiro N, Landuyt W, Huang J S, Wessel P. 2007. Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics. J Geophys Res, 112: B06412

    Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Zhimin JIAN, and two anonymous reviewers for their comments that greatly improved the manuscript. We thank Prof. Zhifei LIU, Prof. Chao MA and Dr. Pengfei MA for their constructive discussions and useful suggestions. This work was supported by the National Natural Science Foundation of China (Grant No. 42050102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **umian Hu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, K., Hu, X., Jiang, J. et al. Unraveling the Cenozoic carbon cycle by reconstructing carbonate compensation depth (CCD). Sci. China Earth Sci. 67, 1743–1758 (2024). https://doi.org/10.1007/s11430-023-1291-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1291-5

Keywords

Navigation