Log in

Multiple thermal events recorded in the Acasta Gneiss Complex: Evidence from in-situ dating of zircon, titanite, and apatite

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In-situ dating of the zircons, titanites, and apatites in the rock fragments of approximately 1 cm2 in size from the Acasta Gneiss Complex was performed using secondary ion mass spectrometry or laser ablation inductively coupled plasma mass spectrometry to provide constraints on the thermal history of the Acasta Gneiss Complex. The zircons in these rock fragments typically exhibit multiple age populations, reflecting the presence of inherited zircons or the post-crystallization process of zircon overgrowth. Combined with previous studies, our zircon dating results reveal multiple magmatic events that occurred in the Acasta Gneiss Complex, specifically at >3.96, ∼3.72, and ∼3.57 Ga, respectively. A titanite Pb-Pb isochron age of 2911±22 Ma (95% confidence level, MSWD=1.5) for sample AY199 is identified, consistent with the timing of the latest Archean magmatism in the Acasta Gneiss Complex. The titanite U-Pb ages for samples AC478 and AY066 are 1932±270 Ma (95% confidence level, MSWD=2.3) and 1813±45 Ma (95% confidence level, MSWD=2.3), respectively. The apatites in sample P090803-C exhibit a Pb-Pb isochron age of 1833±26 Ma (95% confidence level, MSWD=1.4). The apatite U-Pb ages for samples AC478, AY199, and AY066 are 1850±20 Ma (95% confidence level, MSWD=1.3), 1827±100 Ma (95% confidence level, MSWD=6.3), and 1807±58 Ma (95% confidence level, MSWD=3.9), respectively. Titanites in samples AC478 and AY066, as well as the apatites in all four investigated samples, show a uniform age (Pb-Pb or U-Pb age) of ∼1.9–1.8 Ga, indicating U-Pb system reset in these minerals due to the Wopmay orogeny and documenting that the peak temperature condition associated with the Wopmay orogeny exceeded the apatite U-Pb closure temperature and approached or exceeded that of titanite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

References

  • Antoine C, Bruand E, Guitreau M, Devidal J L. 2020. Understanding preservation of primary signatures in apatite by comparing matrix and zircon-hosted crystals from the Eoarchean Acasta Gneiss Complex (Canada). Geochem Geophys Geosyst, 21: e2020GC008923

    Article  CAS  ADS  Google Scholar 

  • Barfod G H, Krogstad E J, Frei R, Albarède F. 2005. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite. Geochim Cosmochim Acta, 69: 1847–1859

    Article  CAS  ADS  Google Scholar 

  • Bauer A M, Fisher C M, Vervoort J D, Bowring S A. 2017. Coupled zircon Lu-Hf and U-Pb isotopic analyses of the oldest terrestrial crust, the >4.03 Ga Acasta Gneiss Complex. Earth Planet Sci Lett, 458: 37–48

    Article  CAS  ADS  Google Scholar 

  • Bilak G S, Niemetz K, Reimink J R, Reyes AV, Chacko T, DuFrane S A, Belosevic M, Ketchum J W F. 2022. Evaluating the age distribution of exposed crust in the Acasta Gneiss Complex using detrital zircons in Pleistocene eskers. Geochem Geophys Geosyst, 23: e2022GC010380

    Article  CAS  ADS  Google Scholar 

  • Bleeker W, Ketchum J W F, Jackson V A, Villeneuve M E. 1999. The central slave basement complex, Part I: Its structural topology and autochthonous cover. Can J Earth Sci, 36: 1083–1109

    Article  CAS  Google Scholar 

  • Bleeker W, Stern R. 1997. The Acasta gneisses: An imperfect sample of Earth’s oldest crust. In: Slave-Northern Cordillera lithospheric evolution (SNORCLE) transect and cordilleran tectonics workshop meeting. 79: 32–33

  • Bowring S A, Housh T. 1995. The Earth’s early evolution. Science, 269: 1535–1540

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bowring S A, King J E, Housh T B, Isachsen C E, Podosek F A. 1989a. Neodymium and lead isotope evidence for enriched early Archaean crust in North America. Nature, 340: 222–225

    Article  CAS  ADS  Google Scholar 

  • Bowring S A, Williams I S, Compston W. 1989b. 3.96 Ga gneisses from the Slave province, Northwest Territories, Canada. Geology, 17: 971–975

    Article  CAS  ADS  Google Scholar 

  • Bowring S A, Williams I S. 1999. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol, 134: 3–16

    Article  CAS  ADS  Google Scholar 

  • Cherniak D J. 2010. Diffusion in accessory minerals: Zircon, titanite, apatite, monazite and xenotime. Rev Mineral Geochem, 72: 827–869

    Article  CAS  Google Scholar 

  • Chew D M, Petrus J A, Kamber B S. 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chem Geol, 363: 185–199

    Article  CAS  ADS  Google Scholar 

  • Chew D M, Sylvester P J, Tubrett M N. 2011. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chem Geol, 280: 200–216

    Article  CAS  ADS  Google Scholar 

  • Cochrane R, Spikings R A, Chew D, Wotzlaw J F, Chiaradia M, Tyrrell S, Schaltegger U, Van der Lelij R. 2014. High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochim Cosmochim Acta, 127: 39–56

    Article  CAS  ADS  Google Scholar 

  • Davidek K L, Martin M W, Bowring S A, Williams I S. 1997. Conventional U-Pb geochronology of the Acasta gneisses using single crystal fragmentation techniques. GAC/MAC Annual Meeting. Ottawa. A-75

  • Emo R B, Smit M A, Schmitt M, Kooijman E, Scherer E E, Sprung P, Bleeker W, Mezger K. 2018. Evidence for evolved Hadean crust from Sr isotopes in apatite within Eoarchean zircon from the Acasta Gneiss Complex. Geochim Cosmochim Acta, 235: 450–462

    Article  CAS  ADS  Google Scholar 

  • Fisher C M, Bauer A M, Vervoort J D. 2020. Disturbances in the Sm-Nd isotope system of the Acasta Gneiss Complex—Implications for the Nd isotope record of the early Earth. Earth Planet Sci Lett, 530: 115900

    Article  CAS  Google Scholar 

  • Hammerli J, Kemp A I S, Spandler C. 2014. Neodymium isotope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals. Earth Planet Sci Lett, 392: 133–142

    Article  CAS  ADS  Google Scholar 

  • Hodges K V, Bowring S A, Coleman D S, Hawkins D P, Davidek K L. 1995. Multi-stage thermal history of the 4.0 Ga Acasta Gneisses. American Geophysical Union Annual Meeting. F708

  • Hoffman P F, Bowring S A, Buchwaldt R, Hildebrand R S. 2011. Birthdate for the Coronation paleocean: Age of initial rifting in Wopmay orogen, Canada. Can J Earth Sci, 48: 281–293

    Article  CAS  Google Scholar 

  • Hoffman P F, Bowring S A. 1984. Short-lived 1.9 Ga continental margin and its destruction, Wopmay orogen, northwest Canada. Geology, 12: 68–72

    Article  ADS  Google Scholar 

  • Hoffman P F. 1989. Precambrian geology and tectonic history of North America. In: Bally A W, Palmer A R, eds. An overview geology of North America. Boulder: Geological Society of America. 447–512

    Chapter  Google Scholar 

  • Huang C, Wang H, Yang J H, Ramezani J, Yang C, Zhang S B, Yang Y H, **a X P, Feng L J, Lin J, Wang T T, Ma Q, He H Y, **e L W, Wu S T. 2020. SA01—A proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination. Geostand Geoanal Res, 44: 103–123

    Article  CAS  Google Scholar 

  • Iizuka T, Komiya T, Ueno Y, Katayama I, Uehara Y, Maruyama S, Hirata T, Johnson S P, Dunkley D J. 2007. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: New constraints on its tectonothermal history. Precambrian Res, 153: 179–208

    Article  CAS  ADS  Google Scholar 

  • Jochum K P, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob D E, Stracke A, Birbaum K, Frick D A, Günther D, Enzweiler J. 2011. Determination of reference values for NIST SRM 610–617 Glasses following ISO guidelines. Geostand Geoanal Res, 35: 397–429

    Article  CAS  Google Scholar 

  • Kennedy A K, Kamo S L, Nasdala L, Timms N E. 2010. Grenville skarn titanite: Potential reference material for SIMS U-Th-Pb analysis. Canadian Miner, 48: 1423–1443

    Article  CAS  Google Scholar 

  • LaFlamme C, McFarlane C R M, Fisher C M, Kirkland C L. 2017. Multi-mineral geochronology: Insights into crustal behaviour during exhumation of an orogenic root. Contrib Mineral Petrol, 172: 9

    Article  ADS  Google Scholar 

  • Li Q L, Li X H, Liu Y, Tang G Q, Yang J H, Zhu W G. 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal At Spectrom, 25: 1107–1113

    Article  CAS  Google Scholar 

  • Li Q L, Li X H, Wu F Y, Yin Q Z, Ye H M, Liu Y, Tang G Q, Zhang C L. 2012. In-situ SIMS U-Pb dating ofphanerozoic apatite with low U and high common Pb. Gondwana Res, 21: 745–756

    Article  CAS  ADS  Google Scholar 

  • Li Q L, Zhou Q, Liu Y, **ao Z, Lin Y, Li J H, Ma H X, Tang G Q, Guo S, Tang X, Yuan J Y, Li J, Wu F Y, Ouyang Z, Li C, Li X H. 2021. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature, 600: 54–58

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Liu D Y, Nutman A P, Compston W, Wu J S, Shen Q H. 1992. Remnants of ⩾3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339–342

    Article  CAS  ADS  Google Scholar 

  • Liu D Y, Wan Y, Wu J, Wilde S A, Zhou H Y, Dong C Y, Yin X Y. 2007. Eoarchaean rocks and zircons in the North China Craton. In: Van Kranendonk M, Smithies R H, Bennett V C, eds. Earth’s Oldest Rocks. Amsterdam: Elsevier. 251–273

    Chapter  Google Scholar 

  • Liu D Y, Wilde S A, Wan Y, Wu J, Zhou H Y, Dong C Y, Yin X Y. 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Am J Sci, 308: 200–231

    Article  CAS  ADS  Google Scholar 

  • Long Y J, Yang W, Lin Y T, Yang J H, Hao J L, Zhang J C. 2019. Sub-micron trace elemental distributions and U-Pb dating of zircon from the oldest rock in the Anshan area, North China Craton. Precambrian Res, 322: 1–17

    Article  CAS  ADS  Google Scholar 

  • Ludwig K R. 2012. User’s Manual for Isoplot 3.75, A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center

    Google Scholar 

  • Mei Q F, Yang J H, Wang Y F, Wang H, Peng P. 2020. Tungsten isotopic constraints on homogenization of the Archean silicate Earth: Implications for the transition of tectonic regimes. Geochim Cosmochim Acta, 278: 51–64

    Article  CAS  ADS  Google Scholar 

  • Mojzsis S J, Cates N L, Caro G, Trail D, Abramov O, Guitreau M, Blichert-Toft J, Hopkins M D, Bleeker W. 2014. Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss. Geochim Cosmochim Acta, 133: 68–96

    Article  CAS  ADS  Google Scholar 

  • Möller A, O’Brien P J, Kennedy A, Kröner A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geol Soc Lond Spec Publ, 220: 65–81

    Article  Google Scholar 

  • Nutman A P, Wan Y, Liu D. 2009. Integrated field geological and zircon morphology evidence for ca. 3.8 Ga rocks at Anshan: Comment on “Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton” by Wu et al. [Precambrian Res. 167 (2008) 339–362]. Precambrian Res, 172: 357–360

    Article  CAS  ADS  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom, 26: 2508–2518

    Article  CAS  Google Scholar 

  • Pidgeon R T, Bosch D, Bruguier O. 1996. Inherited zircon and titanite U-Pb systems in an archaean syenite from southwestern Australia: Implications for U-Pb stability of titanite. Earth Planet Sci Lett, 141: 187–198

    Article  CAS  ADS  Google Scholar 

  • Reimink J R, Bauer A M, Chacko T. 2019. Chapter 15—The Acasta Gneiss Complex. In: Van Kranendonk M J, Bennett V C, Hoffmann J E, eds. Earth’s Oldest Rocks. 2nd ed. Amsterdam: Elsevier. 329–347

    Chapter  Google Scholar 

  • Reimink J R, Chacko T, Stern R A, Heaman L M. 2014. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat Geosci, 7: 529–533

    Article  CAS  ADS  Google Scholar 

  • Reimink J R, Chacko T, Stern R A, Heaman L M. 2016a. The birth of a cratonic nucleus: Lithogeochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex. Precambrian Res, 281: 453–472

    Article  CAS  ADS  Google Scholar 

  • Reimink J R, Davies J H F L, Chacko T, Stern R A, Heaman L M, Sarkar C, Schaltegger U, Creaser R A, Pearson D G. 2016b. No evidence for Hadean continental crust within Earth’s oldest evolved rock unit. Nat Geosci, 9: 777–780

    Article  CAS  ADS  Google Scholar 

  • Rubatto D, Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D, eds. Cathodoluminescence in Geosciences. Berlin, Heidelberg: Springer Berlin Heidelberg. 373–400

    Chapter  Google Scholar 

  • Sano Y, Terada K, Hidaka H, Yokoyama K, Nutman A P. 1999. Palaeoproterozoic thermal events recorded in the ∼4.0 Ga Acasta gneiss, Canada: Evidence from SHRIMP U-Pb dating of apatite and zircon. Geochim Cosmochim Acta, 63: 899–905

    Article  CAS  ADS  Google Scholar 

  • Scott D J, St-Onge M R. 1995. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: Implications for U-Pb geochronology and P-T-t path determinations. Geology, 23: 1123–1126

    Article  CAS  ADS  Google Scholar 

  • Song B, Nutman A P, Liu D Y, Wu J S. 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res, 78: 79–94

    Article  ADS  Google Scholar 

  • Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett, 26: 207–221

    Article  CAS  ADS  Google Scholar 

  • Stern R, Bleeker W. 1998. Age of the world’s oldest rocks refined using Canada’s SHRIMP: The Acasta Gneiss Complex, Northwest Territories, Canada. Geosci Canada, 25: 27–31

    Google Scholar 

  • St-Onge M R, Davis W J. 2018. Wopmay orogen revisited: Phase equilibria modeling, detrital zircon geochronology, and U-Pb monazite dating of a regional Buchan-type metamorphic sequence. GSA Bull, 130: 678–704

    Article  CAS  Google Scholar 

  • St-Onge M R, King J E, Lalonde A E. 1988. Geology, east-central Wopmay Orogen, district of Mackenzie, northwest territories. Geological Survey of Canada. Open File Report 1923, 3 sheets, scale 1:125,000

  • Wan Y S, Liu D Y, Song B, Wu J S, Yang C H, Zhang Z Q, Geng Y S. 2005. Geochemical and Nd isotopic compositions of3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. J Asian Earth Sci, 24: 563–575

    Article  ADS  Google Scholar 

  • Wei Q D, Wang H, Yang Y H, Yang J H, Huang C, Wu S T, **e L W. 2020. KV01 zircon—A potential New Archean reference material for microbeam U-Pb age and Hf-O isotope determinations. Sci China Earth Sci, 63: 1780–1790

    Article  CAS  ADS  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards News-Lett, 19: 1–23

    Article  CAS  Google Scholar 

  • Wu F Y, Zhang Y B, Yang J H, **e L W, Yang Y H. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in An-shan of the North China Craton. Precambrian Res, 167: 339–362

    Article  CAS  ADS  Google Scholar 

  • Wu F Y, Zhang Y B, Yang J H, **e L W, Yang Y H. 2009. Are there any 3.8 Ga rock at Anshan in the North China Craton? Reply to comments on “Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton” by Nutman et al.. Precambrian Res, 172: 361–363

    Article  CAS  ADS  Google Scholar 

  • Wu S, Yang M, Yang Y, **e L, Huang C, Wang H, Yang J. 2020. Improved in situ zircon U-Pb dating at high spatial resolution (5–16 µm) by laser ablation-single collector-sector field-ICP-MS using Jet sample and X skimmer cones. Int J Mass Spectrometry, 456: 116394

    Article  CAS  ADS  Google Scholar 

  • Wu Y, Zheng Y. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull, 49: 1554–1569

    Article  CAS  Google Scholar 

  • York D. 1969. Least squares fitting of a straight line with correlated errors. Earth Planet Sci Lett, 5: 320–324

    Article  CAS  ADS  Google Scholar 

  • Zhao G, Cawood P A, Wilde S A, Sun M. 2002. Review of global 2.1–1.8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Sci Rev, 59: 125–162

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Tsuyoshi IIZUKA for providing the Acasta gneiss samples, Mingming ZHANG for preparing the sample mounts, and Yu LIU as well as Chao HUANG for their technical assistance with SIMS and LA-ICPMS. We thank two anonymous reviewers and the responsible editor for their constructive comments and suggestions that greatly improved the manuscript. This work was supported by the National Natural Science Foundation of China (Grants Nos. 42103011, 42073034, and 42288201) and the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grants No. XDB41000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Mei.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Q., Yang, J., Sun, J. et al. Multiple thermal events recorded in the Acasta Gneiss Complex: Evidence from in-situ dating of zircon, titanite, and apatite. Sci. China Earth Sci. 67, 673–686 (2024). https://doi.org/10.1007/s11430-023-1251-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1251-2

Keywords

Navigation