Log in

Improvement of cloud microphysical parameterization and its advantages in simulating precipitation along the Sichuan-**zang Railway

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Sichuan-**zang Railway is an important part of the railway network in China, and geological disasters, such as mountain floods and landslides, frequently occur in this region. Precipitation is an important cause of these disasters; therefore, accurate simulation of the precipitation in this region is highly important. In this study, the descriptions for uncertain processes in the cloud microphysics scheme are improved; these processes include cloud droplet activation, cloud-rain autoconversion, rain accretion by cloud droplets, and the entrainment-mixing process. In the default scheme, the cloud water content of different sizes corresponds to the same cloud droplet concentration, which is inconsistent with the actual content; this results in excessive cloud droplet size, unreasonable related conversion rates of microphysical process (such as cloud-rain autoconversion), and an overestimation of precipitation. Our new scheme overcomes the problem of excessive cloud droplet size. The processes of cloudrain autoconversion and rain accretion by cloud droplets are similar to the stochastic collection equation, and the mixing mechanism of cloud droplets is more consistent with that occurred during the actual physical process in the cloud. Based on the new and old schemes, multiple precipitation processes in the flood season of 2021 along the Sichuan-**zang Railway are simulated, and the results are evaluated using ground observations and satellite data. Compared to the default scheme, the new scheme is more suitable for the simulation of cloud physics, reducing the simulation deviation of the liquid water path and droplet radius from 2 times to less than 1 time and significantly alleviating the overestimation of precipitation intensity and range of precipitation center. The average root-mean-square error is reduced by 22%. Our results can provide a scientific reference for improving precipitation forecasting and disaster prevention in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cohard J M, Pinty J P. 2000. A comprehensive two-moment warm microphysical bulk scheme. II: 2D experiments with a non-hydrostatic model. Q J R Meteorol Soc, 126: 1843–1859

    ADS  Google Scholar 

  • Deng W, Sun J M, Lei H C. 2018. Numerical investigations for the impacts of triple-moment and double-moment condensation schemes on the warm rain formation. Atmos Ocean Sci Lett, 11: 472–480

    Article  Google Scholar 

  • Di J, Xu F, Li Y, Yang Y, Xu C. 2019. Precipitation type and threshold analysis of geological disasters in southeast (in Chinese). J Catastroph, 34: 62–67

    Google Scholar 

  • Ding P, Yang Z, You Y, Jiang L, Zhang G. 2017. Vulnerability evaluation on landslide hazards to Sichuan-Tibet Railway (in Chinese). Railw Engin, 57: 133–138

    Google Scholar 

  • Dong H, Xu H, Luo Y. 2012. Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF Model: Sensitivity to cloud microphysical schemes (in Chinese). Chin J Atmos Sci, 36: 145–169

    Google Scholar 

  • Gettelman A, Morrison H, Terai C R, Wood R. 2013. Microphysical process rates and global aerosol-cloud interactions. Atmos Chem Phys, 13: 9855–9867

    Article  ADS  Google Scholar 

  • Guo X, Fu D, Guo X, Zhang C. 2014. A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmos Res, 142: 142–157

    Article  CAS  Google Scholar 

  • He X, Lu C, Shi X, Zhang W, Zhu L, Xu X, Li J, Li D. 2023. Development of a triple-moment ice-phase cloud microphysics scheme and its application to the Single Column Atmosphere Model (in Chinese). Chin Sci Bull, 68: 1971–1984

    Google Scholar 

  • Heng Z, Cheng X. 2018. Influence of assimilation of southwest vortex intensive observation on precipitation forecast of southwestern regional model (in Chinese). Plat MountMeteor Res, 38: 1–8

    Google Scholar 

  • Hong S Y, Dudhia J, Chen S H. 2004. A revised approach to ice micro-physical processes for the bulk parameterization of clouds and precipitation. Mon Wea Rev, 132: 103–120

    Article  ADS  Google Scholar 

  • Huang H, Chen C, Zhu W. 2011. Impacts of different cloud microphysical processes and horizontal resolutions of wrf model on precipitation forecast effect (in Chinese). Meteorol Sci Technol, 39: 529–536

    Google Scholar 

  • Huffman G, Stocker E, Bolvin D, Nelkin E, Tan J. 2019. GPM IMERG final precipitation L3 half hourly 0.1 degree x 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA

  • Kang Y, ** S, Peng X, Yang X, Shang K, Wang S. 2018. Comparative analysis of single-moment and double-moment microphysics schemes in WRF on the torrential rainfall event in North China during 1921 July 2016 (in Chinese). Plat Meteor, 37: 481–494

    Google Scholar 

  • Khain A P, Beheng K D, Heymsfield A, Korolev A, Krichak S O, Levin Z, Pinsky M, Phillips V, Prabhakaran T, Teller A, van den Heever S C, Yano J. 2015. Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev Geophys, 53: 247–322

    Article  ADS  Google Scholar 

  • Khairoutdinov M, Kogan Y. 2000. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon Wea Rev, 128: 229–243

    Article  ADS  Google Scholar 

  • Lee H, Baik J J. 2017. A physically based autoconversion parameterization. J Atmos Sci, 74: 1599–1616

    Article  ADS  Google Scholar 

  • Li D. 2022. The influence mechanism of cloud droplet spectral dispersion on cloud precipitation was studied by WRF-Chem simulation (in Chinese). Master Dissertation. Nan**g: Nan**g University of Information Science and Technology

    Google Scholar 

  • Li G, Wang Y, Zhang R. 2008. Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction. J Geophys Res, 113: D15211

    ADS  Google Scholar 

  • Li J, Jian B, Huang J, Hu Y, Zhao C, Kawamoto K, Liao S, Wu M. 2018. Long-term variation of cloud droplet number concentrations from space-based Lidar. Remote Sens Environ, 213: 144–161

    Article  CAS  ADS  Google Scholar 

  • Li J, Jiang X, Schiemann R, Chen H, Li Y, Heng Z. 2023. Prediction of the diurnal variation of summertime precipitation over the Sichuan Basin by a regional model. J Geophys Res-Atmos, 128: e2021JD036247

    Article  ADS  Google Scholar 

  • Li R, Shao W, Guo J, Fu Y, Wang Y, Liu G, Zhou R, Li W. 2019. A simplified algorithm to estimate latent heating rate using vertical rainfall profiles over the Tibetan Plateau. J Geophys Res-Atmos, 124: 942–963

    Article  ADS  Google Scholar 

  • Li X, Zhu P, Zhai G, Liu R, Shen X, Huang W, Wang D. 2016. Testing parameterization schemes for simulating depositional growth of ice crystal using Koenig and Takahashi parameters: A pre-summer rainfall case study over Southern China. Atmos Sci Lett, 17: 3–12

    Article  ADS  Google Scholar 

  • Li Y, Zhang M. 2017. The role of shallow convection over the Tibetan Plateau. J Clim, 30: 5791–5803

    Article  ADS  Google Scholar 

  • Li Y. 2022. Progress of research on the disaster weather affected by the heat source and the weather systems over the Tibetan Plateau (in Chinese). Plat Mount Meteoro Res, 42: 1–12

    Google Scholar 

  • Lin Y, Colle B A. 2009. The 4–5 December 2001 IMPROVE-2 Event: Observed microphysics and comparisons with the weather research and forecasting model. Mon Weather Rev, 137: 1372–1392

    Article  ADS  Google Scholar 

  • Liu J, Guo H, Deng G, Xu J, Zhong Y, Xu Y. 2022. Study on precipitation threshold of geological disasters along Sichuan Section of Sichuan-Tibet Railway (in Chinese). J Catastrophol, 37: 83–91

    ADS  Google Scholar 

  • Liu S. 2011. The risk disaster assessment of geologic disaster in Sichuan-Tibet highway (in Chinese). Master Dissertation. Chongqing: Chongqing Jiaotong University

    Google Scholar 

  • Liu Y, Daum P H, McGraw R L. 2005. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys Res Lett, 32: L11811

    Article  ADS  Google Scholar 

  • Liu Y, Daum P H. 2004. Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J Atmos Sci, 61: 1539–1548

    Article  ADS  Google Scholar 

  • Liu Y, Li W L. 2015. A method for solving relative dispersion of the cloud droplet spectra. Sci China Earth Sci, 58: 929–938

    Article  ADS  Google Scholar 

  • Long A B. 1974. Solutions to the droplet collection equation for polynomial kernels. J Atmos Sci, 31: 1040–1052

    Article  ADS  Google Scholar 

  • Lu C, Liu Y, Niu S, Krueger S, Wagner T. 2013a. Exploring parameterization for turbulent entrainment-mixing processes in clouds. J Geophys Res-Atmos, 118: 185–194

    Article  ADS  Google Scholar 

  • Lu C, Niu S, Liu Y, Vogelmann A M. 2013b. Empirical relationship between entrainment rate and microphysics in cumulus clouds. Geophys Res Lett, 40: 2333–2338

    Article  ADS  Google Scholar 

  • Lu C, Zhu L, Liu Y, Mei F, Fast J D, Pekour M S, Luo S, Xu X, He X, Li J, Gao S. 2023. Observational study of relationships between entrainment rate, homogeneity of mixing, and cloud droplet relative dispersion. Atmos Res, 293: 106900

    Article  Google Scholar 

  • Luo S, Lu C, Liu Y, Gao W, Zhu L, Xu X, Li J, Guo X. 2020. Consideration of initial cloud droplet size distribution shapes in quantifying different entrainment-mixing mechanisms. J Geophys Res-Atmos, 126: e2020JD034455

  • Ma X, von Salzen K, Cole J. 2010. Constraints on interactions between aerosols and clouds on a global scale from a combination of MODIS-CERES satellite data and climate simulations. Atmos Chem Phys, 10: 9851–9861

    Article  CAS  ADS  Google Scholar 

  • Ma Z, Liu Q, Zhao C, Li Z, Wu X, Chen J, Yu F, Sun J, Shen X. 2022. Impacts of transition approach of water vapor-related microphysical processes on quantitative precipitation forecasting. Atmosphere, 13: 1133

    Article  ADS  Google Scholar 

  • Minnis P, Sun-Mack S, Chen Y, Chang F L, Yost C R, Smith W L, Heck P W, Arduini R F, Bedka S T, Yi Y, Hong G, ** Z, Painemal D, Palikonda R, Scarino B R, Spangenberg D A, Smith R A, Trepte Q Z, Yang P, **e Y. 2021. CERES MODIS cloud product retrievals for edition 4—Part I: Algorithm changes. IEEE Trans Geosci Remote Sens, 59: 2744–2780

    Article  ADS  Google Scholar 

  • Minnis P, Sun-Mack S, Chen Y, Khaiyer M M, Yi Y, Ayers J K, Brown R R, Dong X, Gibson S C, Heck P W, Lin B, Nordeen M L, Nguyen L, Palikonda R, Smith W L, Spangenberg D A, Trepte Q Z, ** B. 2011. CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans Geosci Remote Sens, 49: 4401–4430

    Article  ADS  Google Scholar 

  • Morrison H, Curry J A, Khvorostyanov V I. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J Atmos Sci, 62: 1665–1677

    Article  ADS  Google Scholar 

  • Morrison H, Grabowski W W. 2008. Modeling supersaturation and sub-grid-scale mixing with two-moment bulk warm microphysics. J Atmos Sci, 65: 792–812

    Article  ADS  Google Scholar 

  • Morrison H, van Lier-Walqui M, Fridlind A M, Grabowski W W, Harrington J Y, Hoose C, Korolev A, Kumjian M R, Milbrandt J A, Pawlowska H, Posselt D J, Prat O P, Reimel K J, Shima S, van Die-denhoven B, Xue L. 2020. Confronting the challenge of modeling cloud and precipitation microphysics. J Adv Model Earth Syst, 12: e2019MS001689

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Peng Y, Lohmann U. 2003. Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect. Geophys Res Lett, 30: 1507

    Article  ADS  Google Scholar 

  • Qian Q, Lin Y, Luo Y, Zhao X, Zhao Z, Luo Y, Liu X. 2018. Sensitivity of a simulated squall line during southern china monsoon rainfall experiment to parameterization of microphysics. J Geophys Res-Atmos, 123: 4197–4220

    Article  ADS  Google Scholar 

  • Rasmussen R M, Geresdi I, Thompson G, Manning K, Karplus E. 2002. Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J Atmos Sci, 59: 837–860

    Article  ADS  Google Scholar 

  • Rosenfeld D, Zhu Y, Wang M, Zheng Y, Goren T, Yu S. 2019. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds. Science, 363: 6427

    Article  Google Scholar 

  • Song Z, Zhang G, Jiang L, Wu G. 2016. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet Railway (in Chinese). Rail Standard Desigh, 60: 14–19

    Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang W, Powers J. 2008. A description of the advanced research WRF Version 3, NCAR technical note, mesoscale and microscale meteorology division. National Center for Atmospheric Research, Boulder, Colorado, USA

    Google Scholar 

  • Tie Y, Zhou H, Ni H. 2013. Formation of low frequency debris flow induced by short-time heavy rainfall in mountain area of Southwest China—Take Lengmu Debris Flow as an example, Baoxing, Sichuan Province (in Chinese). J Catastrophol, 28:110–113+187

    Google Scholar 

  • Thompson G, Rasmussen R M, Manning K. 2004. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon Wea Rev, 132: 519–542

    Article  ADS  Google Scholar 

  • Wang F, Lu C. 2023. Advances of theoretical, observational, and numerical studies on relative dispersion of cloud droplet spectra (in Chinese). Plat Meteorol, 42: 809–820

    Google Scholar 

  • Wang H, Yin J, Wang D. 2014. Comparative analysis of single-moment and double-moment microphysics schemes on a local heavy rainfall in South China (in Chinese). Plat Meteorol, 33: 1341–1351

    CAS  Google Scholar 

  • Wang H, Lei H, Yang J. 2017. Microphysical processes of a stratiform precipitation event over eastern China: Analysis using micro rain radar data. Adv Atmos Sci, 34: 1472–1482

    Article  Google Scholar 

  • Wang W, Bruyere C, Duda M, Dudhia J, Gill D, Kavulich M, Keene K, Lin H C, Michalakes J, Rizvi S. 2017. User’s guides for the advanced research WRF (ARW) modeling system. Version 3

  • Wang Y, Fan J, Zhang R, Leung L R, Franklin C. 2013. Improving bulk microphysics parameterizations in simulations of aerosol effects. J Geophys Res-Atmos, 118: 5361–5379

    Article  ADS  Google Scholar 

  • Wang Y, Lu C, Niu S, Lv J, Jia X, Xu X, Xue Y, Zhu L, Yan S. 2023. Diverse dispersion effects and parameterization of relative dispersion in urban fog in eastern China. J Geophys Res-Atmos, 128: e2022JD037514

    Article  ADS  Google Scholar 

  • Wang Y, Niu S, Lu C, Fan S, Lv J, Xu X, ** Y, Sun W. 2021. A new CCN activation parameterization and its potential influences on aerosol indirect effects. Atmos Res, 253: 105491

    Article  CAS  Google Scholar 

  • Wang Y, Niu S, Lv J, Lu C, Xu X, Wang Y, Ding J, Zhang H, Wang T, Kang B. 2019. A New method for distinguishing unactivated particles in cloud condensation nuclei measurements: Implications for aerosol indirect effect evaluation. Geophys Res Lett, 46: 14185–14194

    Article  ADS  Google Scholar 

  • Wood R. 2005. Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J Atmos Sci, 62: 3011–3033

    Article  ADS  Google Scholar 

  • **e X, Liu X, Peng Y, Wang Y, Yue Z, Li X. 2013. Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion. Tellus B-Chem Phys Meteor, 65: 19054

    Article  Google Scholar 

  • Xu X, Lu C, Liu Y, Gao W, Wang Y, Cheng Y, Luo S, Van Weverberg K. 2020. Effects of cloud liquid-phase microphysical processes in mixed-phase cumuli over the Tibetan Plateau. J Geophys Res-Atmos, 125: e2020JD033371

    Article  ADS  Google Scholar 

  • Xu X, Lu C, Liu Y, Luo S, Zhou X, Endo S, Zhu L, Wang Y. 2022. Influences of an entrainment-mixing parameterization on numerical simulations of cumulus and stratocumulus clouds. Atmos Chem Phys, 22: 5459–5475

    Article  CAS  ADS  Google Scholar 

  • Xue H, Feingold G, Stevens B. 2008. Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J Atmos Sci, 65: 392–406

    Article  ADS  Google Scholar 

  • Yang Z, Ding P, Wang D, You Y, Li M, Qiao J. 2018. Landslide risk analysis on Sichuan-Tibet Railway (Kangding to Nyingchi Section) (in Chinese). J China Railw Soci, 40: 97–103

    Google Scholar 

  • Yin J, Wang D, Zhai G. 2014. A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China (in Chinese). Adv Earth Sci, 29: 238–242+249+243–248

    Google Scholar 

  • Yu C, Liu D, Hu K, Tian P, Wu Y, Zhao D, Wu H, Hu D, Guo W, Li Q, Huang M, Ding D, Allan J D. 2022. Aerodynamic size-resolved composition and cloud condensation nuclei properties of aerosols in a Bei**g suburban region. Atmos Chem Phys, 22:4375–4391

    Article  CAS  ADS  Google Scholar 

  • Zhang G, Wang M, Lu C, Bao Q, Wang Y. 2017. Development of parameterizations of atmospheric physical processes for high resolution global climate models and their applications (in Chinese). China Basic Sci, 19: 40–44

    Google Scholar 

  • Zhang Y, Lei H, Pan X, Wang C, **e Y. 2009. Study on cloud micro-physical processes and precipitation form active mechanisms of a mesoscale convective system in Meiyu Front in June 2004 (in Chinese). J Meteorolog Sci, 29: 4434–4446

    Google Scholar 

  • Zhao C, Qiu Y, Dong X, Wang Z, Peng Y, Li B, Wu Z, Wang Y. 2018. Negative aerosol-cloud r(e) relationship from aircraft observations over Hebei, China. Earth Space Sci, 5: 19–29

    Article  ADS  Google Scholar 

  • Zhou G, Zhao C, Qin Y. 2005. Impact of cloud droplets spectral uncertainty on the mesoscale precipitation (in Chinese). J Trop Meteor, 6: 605–614

    Google Scholar 

  • Zhu L, Lu C, Xu X, He X, Li J, Luo S, Wang Y, Wang F. 2024. The probability density function related to shallow cumulus entrainment rate and its influencing factors in a large-eddy simulation. Adv Atmos Sci, 41: 173–187

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant No. 2019QZKK0105), the Key Project of the National Natural Science Foundation of China (Grant No. 42030611), the National Key Research and Development Program of China (Grant No. 2022YFC3003903), the National Natural Science Foundation of China (Grant Nos. 42205072 & 42305083), the Basic Research Fund of Chinese Academy of Meteorological Sciences (Grant No. 2022Y024), and the Key Research and Development Program of Science and Technology Department of Sichuan Province (Grant No. 2022YFS0540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsong Lu.

Ethics declarations

Conflict of interest The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Heng, Z., Li, Y. et al. Improvement of cloud microphysical parameterization and its advantages in simulating precipitation along the Sichuan-**zang Railway. Sci. China Earth Sci. 67, 856–873 (2024). https://doi.org/10.1007/s11430-023-1247-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1247-2

Keywords

Navigation