Log in

Variations in terrestrial oxygen sources under climate change

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The terrestrial ecosystem is an important source of atmospheric oxygen, and its changes are closely related to variations in atmospheric oxygen level. However, few studies have focused on the characteristics and driving forces behind terrestrial ecosystem oxygen sources. In this study, based on observations and net carbon flux simulations from the Sixth Coupled Model Intercomparison Project, we investigated temporal and spatial variations in terrestrial oxygen sources. As the largest source of atmospheric oxygen, the terrestrial ecosystem can produce approximately 7.10±0.38 gigatons of oxygen per year, and the tropics are the main oxygen producing regions. Notably, there are many “non-oxygen-producing lands”, where the lands no longer provide oxygen to the atmosphere, located in the high latitudes and around the deserts of Central Asia. Long-term analysis reveals that anthropogenic activities and climate change are responsible for the variations in terrestrial oxygen sources owing to land-use changes and competing effects between net photosynthesis and heterotrophic respiration. By 2100, more oxygen will be produced from the low-middle latitudes, while the high latitudes will serve as a larger oxygen sink due to extreme land-use type changes and drastic increases in soil respiration. Through this study, we supplement the understanding of the modern oxygen cycle and help provide better estimates for future variations in atmospheric oxygen level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battle M, Bender M L, Tans P P, White J W C, Ellis J T, Conway T, Francey R J. 2000. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science, 287: 2467–2470

    Article  Google Scholar 

  • Battle M O, Munger J W, Conley M, Sofen E, Perry R, Hart R, Davis Z, Scheckman J, Woogerd J, Graeter K, Seekins S, David S, Carpenter J. 2019. Atmospheric measurements of the terrestrial O2:CO2 exchange ratio of a midlatitude forest. Atmos Chem Phys, 19: 8687–8701

    Article  Google Scholar 

  • Bauer J, Herbst M, Huisman J A, Weihermüller L, Vereecken H. 2008. Sensitivity of simulated soil heterotrophic respiration to temperature and moisture reduction functions. Geoderma, 145: 17–27

    Article  Google Scholar 

  • Bender M L, Battle M, Keeling R F. 1998. The O2 balance of the atmosphere: A tool for studying the fate of fossil-fuel CO2. Annu Rev Energy Environ, 23: 207–223

    Article  Google Scholar 

  • Bloom A J, Caldwell R M, Finazzo J, Warner R L, Weissbart J. 1989. Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol, 91: 352–356

    Article  Google Scholar 

  • Braganza K, Karoly D J, Hirst A C, Mann M E, Stott P, Stouffer R J, Tett S F B. 2003. Simple indices of global climate variability and change: Part I: Variability and correlation structure. Clim Dyn, 20: 491–502

    Article  Google Scholar 

  • Braganza K, Karoly D J, Hirst A C, Stott P, Stouffer R J, Tett S F B. 2004. Simple indices of global climate variability and change part II: Attribution of climate change during the twentieth century. Clim Dyn, 22: 823–838

    Article  Google Scholar 

  • Chameides W L, Perdue M. 1997. Global Biogeochemical Cycles: A Computer-Interactive Study of Earth System. New York: Oxford University Press. 1–28.

    Google Scholar 

  • Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi R K, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu Z, Nemani R R, Myneni R B. 2019. China and India lead in greening of the world through land-use management. Nat Sustain, 2: 122–129

    Article  Google Scholar 

  • Chen Z, Yu G, Ge J, Sun X, Hirano T, Saigusa N, Wang Q, Zhu X, Zhang Y, Zhang J, Yan J, Wang H, Zhao L, Wang Y, Shi P, Zhao F. 2013. Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agric For Meteorol, 182–183: 266–276

    Article  Google Scholar 

  • Clay G D, Worrall F. 2015. Oxidative ratio (OR) of Southern African soils and vegetation: Updating the global OR estimate. Catena, 126: 126–133

    Article  Google Scholar 

  • Cusbasch U, Meehl G A, Boer G J, Stouffer R J, Dix M R, Noda A, Senior C A, Raper S, Yap K S. 2001. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to The Third Assessment Report of The Intergovernmental Panel on Climate Change. New York: Cambridge University Press. 525–582.

    Google Scholar 

  • Dilly O. 2001. Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biol Biochem, 33: 117–127

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E. 2016. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev, 9: 1937–1958

    Google Scholar 

  • Fang J, Brown S, Tang Y, Nabuurs G J, Wang X, Shen H. 2006. Overestimated biomass carbon pools of the northern mid- and high latitude forests. Clim Change, 74: 355–368

    Article  Google Scholar 

  • Francioni M, D’Ottavio P, Lai R, Trozzo L, Budimir K, Foresi L, Kishimoto-Mo A W, Baldoni N, Allegrezza M, Tesei G, Toderi M. 2019. Seasonal soil respiration dynamics and carbon-stock variations in mountain permanent grasslands compared to arable lands. Agriculture, 9: 165.

    Article  Google Scholar 

  • Frankenberg C, Fisher J B, Worden J, Badgley G, Saatchi S S, Lee J E, Toon G C, Butz A, Jung M, Kuze A, Yokota T. 2011. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys Res Lett, 38: L17706.

    Article  Google Scholar 

  • Friedlingstein P, Jones M W, O’Sullivan M, Andrew R M, Hauck J, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Bakker D C E, Canadell J G, Ciais P, Jackson R B, Anthoni P, Barbero L, Bastos A, Bastrikov V, Becker M, Bopp L, Buitenhuis E, Chandra N, Chevallier F, Chini L P, Currie K I, Feely R A, Gehlen M, Gilfillan D, Gkritzalis T, Goll D S, Gruber N, Gutekunst S, Harris I, Haverd V, Houghton R A, Hurtt G, Ilyina T, Jain A K, Joetzjer E, Kaplan J O, Kato E, Klein Goldewijk K, Korsbakken J I, Landschützer P, Lauvset S K, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Marland G, McGuire P C, Melton J R, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Neill C, Omar A M, Ono T, Peregon A, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Séférian R, Schwinger J, Smith N, Tans P P, Tian H, Tilbrook B, Tubiello F N, van der Werf G R, Wiltshire A J, Zaehle S. 2019. Global carbon budget 2019. Earth Syst Sci Data, 11: 1783–1838

    Article  Google Scholar 

  • Gallagher M E, Masiello C A, Hockaday W C, Baldock J A, Snapp S, McSwiney C P. 2014. Controls on the oxidative ratio of net primary production in agricultural ecosystems. Biogeochemistry, 121: 581–594

    Article  Google Scholar 

  • Gallagher M E, Liljestrand F L, Hockaday W C, Masiello C A. 2017. Plant species, not climate, controls aboveground biomass O2:CO2 exchange ratios in deciduous and coniferous ecosystems. J Geophys Res-Biogeosci, 122: 2314–2324

    Article  Google Scholar 

  • Han D, Huang J, Ding L, Liu X, Li C, Yang F. 2021. Oxygen footprint: An indicator of the anthropogenic ecosystem changes. Catena, 206: 105501.

    Article  Google Scholar 

  • Hockaday W C, Masiello C A, Randerson J T, Smernik R J, Baldock J A, Chadwick O A, Harden J W. 2009. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance. J Geophys Res, 114: G02014.

    Article  Google Scholar 

  • Hockaday W C, Gallagher M E, Masiello C A, Baldock J A, Iversen C M, Norby R J. 2015. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2. J Geophys Res-Biogeosci, 120: 1797–1811

    Article  Google Scholar 

  • Huang J, Huang J, Liu X, Li C, Ding L, Yu H. 2018. The global oxygen budget and its future projection. Sci Bull, 63: 1180–1186

    Article  Google Scholar 

  • Huang J, Liu X, He Y, Shen S, Hou Z, Li S, Li C, Yao L, Huang J. 2021. The oxygen cycle and a habitable Earth. Sci China Earth Sci, 64: 511–528

    Article  Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R. 2016. Accelerated dryland expansion under climate change. Nat Clim Change, 6: 166–171

    Article  Google Scholar 

  • Hurtt G C, Chini L, Sahajpal R, Frolking S, Bodirsky B L, Calvin K, Doelman J C, Fisk J, Fujimori S, Klein Goldewijk K, Hasegawa T, Havlik P, Heinimann A, Humpenöder F, Jungclaus J, Kaplan J O, Kennedy J, Krisztin T, Lawrence D, Lawrence P, Ma L, Mertz O, Pongratz J, Popp A, Poulter B, Riahi K, Shevliakova E, Stehfest E, Thornton P, Tubiello F N, van uuren D P, Zhang X. 2020. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci Model Dev, 13: 5425–5464

    Article  Google Scholar 

  • Ishidoya S, Murayama S, Takamura C, Kondo H, Saigusa N, Goto D, Morimoto S, Aoki N, Aoki S, Nakazawa T. 2013. O2:CO2 exchange ratios observed in a cool temperate deciduous forest ecosystem of central Japan. Tellus B-Chem Phys Meteorol, 65: 21120.

    Article  Google Scholar 

  • Jong R, Verbesselt J, Schaepman M E, Bruin S. 2012. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob Change Biol, 18: 642–655

    Article  Google Scholar 

  • Keeling R F. 1988. Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air. J Atmos Chem, 7: 153–176

    Article  Google Scholar 

  • Keeling R F, Shertz S R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature, 358: 723–727

    Article  Google Scholar 

  • Keeling R F, Piper S C, Heimann M. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature, 381: 218–221

    Article  Google Scholar 

  • Keeling R F, Manning A C. 2014. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 385–404.

    Book  Google Scholar 

  • Kozlova E A, Manning A C, Jordan A, Brand W. 2005. Investigations of the land biotic O2:CO2 exchange ratios in photosynthesis and respiration. Seoul: Proceedings of the 7th International Carbon Dioxide Conference.

  • Langenfelds R L, Francey R J, Steele L P, Battle M, Keeling R F, Budd W F. 1999. Partitioning of the global fossil CO2 sink using a 19-year trend in atmospheric O2. Geophys Res Lett, 26: 1897–1900

    Article  Google Scholar 

  • Li C, Huang J, Ding L, Liu X, Yu H, Huang J. 2020. Increasing escape of oxygen from oceans under climate change. Geophys Res Lett, 47: e86345.

    Google Scholar 

  • Li C, Huang J, Ding L, Liu X, Han D, Huang J. 2021. Estimation of oceanic and land carbon sinks based on the most recent oxygen budget. Earths Future, 9: e02124.

    Google Scholar 

  • Liu S, Fang J. 1997. Effect factors of soil respiration and the temperature’s effects of soil respiration in the global scale (in Chinese). Acta Ecologica Sinica, 17: 469–476

    Google Scholar 

  • Liu X, Huang J, Huang J, Li C, Ding L, Meng W. 2020. Estimation of gridded atmospheric oxygen consumption from 1975 to 2018. J Meteorol Res, 34: 646–658

    Article  Google Scholar 

  • Maltepe E, Saugstad O D. 2009. Oxygen in health and disease: Regulation of oxygen homeostasis-clinical implications. Pediatr Res, 65: 261–268

    Article  Google Scholar 

  • Manning A C, Keeling R F. 2006. Global oceanic and land biotic carbon sinks from the scripps atmospheric oxygen flask sampling network. Tellus B-Chem Phys Meteorol, 58: 95–116

    Article  Google Scholar 

  • Masiello C A, Gallagher M E, Randerson J T, Deco R M, Chadwick O A. 2008. Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. J Geophys Res, 113: G03010.

    Article  Google Scholar 

  • Müller C, Abbasi M K, Kammann C, Clough T J, Sherlock R R, Stevens R J, Jäger H J. 2004. Soil respiratory quotient determined via barometric process separation combined with nitrogen-15 labeling. Soil Sci Soc Am J, 68: 1610–1615

    Article  Google Scholar 

  • Nemani R R, Keeling C D, Hashimoto H, Jolly W M, Piper S C, Tucker C J, Myneni R B, Running S W. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300: 1560–1563

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J. 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycle, 21: GB3018.

    Google Scholar 

  • Piao S, Wang X, Park T, Chen C, Lian X, He Y, Bjerke J W, Chen A, Ciais P, Tømmervik H, Nemani R R, Myneni R B. 2020. Characteristics, drivers and feedbacks of global greening. Nat Rev Earth Environ, 1: 14–27

    Article  Google Scholar 

  • Poorter H, Villar R. 1997. Plant Resource Allocation. Hague: SPB Academic. 39–72.

    Book  Google Scholar 

  • Raich J W, Schlesinger W H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B-Chem Phys Meteorol, 44: 81–99

    Article  Google Scholar 

  • Randerson J T, Masiello C A, Still C J, Rahn T, Poorter H, Field C B. 2006. Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Glob Change Biol, 12: 260–271

    Article  Google Scholar 

  • Seibt U, Brand W A, Heimann M, Lloyd J, Severinghaus J P, Wingate L. 2004. Observations of O2:CO2 exchange ratios during ecosystem gas exchange. Glob Biogeochem Cycle, 18: GB4024.

    Article  Google Scholar 

  • Severinghaus J P. 1995. Studies of the terrestrial O2 and carbon cycles in sand dune gases and in Biosphere 2. Doctoral Dissertation. New York: Columbia University.

    Google Scholar 

  • Sirignano C, Neubert R E M, Rödenbeck C, Meijer H A J. 2010. Atmospheric oxygen and carbon dioxide observations from two European coastal stations 2000–2005: Continental influence, trend changes and APO climatology. Atmos Chem Phys, 10: 1599–1615

    Article  Google Scholar 

  • Sitch S, Friedlingstein P, Gruber N, Jones S D, Murray-Tortarolo G, Ahlström A, Doney S C, Graven H, Heinze C, Huntingford C, Levis S, Levy P E, Lomas M, Poulter B, Viovy N, Zaehle S, Zeng N, Arneth A, Bonan G, Bopp L, Canadell J G, Chevallier F, Ciais P, Ellis R, Gloor M, Peylin P, Piao S L, Le Quéré C, Smith B, Zhu Z, Myneni R. 2015. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12: 653–679

    Article  Google Scholar 

  • Smith W K, Reed S C, Cleveland C C, Ballantyne A P, Anderegg W R L, Wieder W R, Liu Y Y, Running S W. 2016. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat Clim Change, 6: 306–310

    Article  Google Scholar 

  • Stephens B B, Bakwin P S, Tans P P, Teclaw R M, Baumann D D. 2007. Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations. J Atmos Ocean Tech, 24: 82–94

    Article  Google Scholar 

  • Stocker T F, Qin D, Plattner G K L, Alexander V, Allen S K, Bindoff N L, Bréon F M, Church J A, Cubasch U, Emori S, Forster P, Friedlingstein P, Gillett N, Gregory J M, Hartmann D L, Jansen E, Kirtman B, Knutti R, Krishna Kumar K, Lemke P, Marotzke J, Masson-Delmotte V, Meehl G A, Mokhov I I, Piao S, Ramaswamy V, Randall D, Rhein M, Rojas M, Sabine C, Shindell D, Talley L D, Vaughan D G, **e S P. 2013. Technical Summary. In: Church J, Clark P, Cazenave A, Gregory J, Jevrejeva S, Levermann A, Merrifield M, Milne G, Nerem R S, Nunn P, Payne A, Pfeffer W T, Stammer D, Alakkat U, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 33–115.

  • Sturm P, Leuenberger M, Schmidt M. 2005. Atmospheric O2, CO2 and δ13C observations from the remote sites Jungfraujoch, Switzerland, and Puy de Dôme, France. Geophys Res Lett, 32: L17811.

    Article  Google Scholar 

  • Sun G, Mu M. 2013. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim Change, 120: 755–769

    Article  Google Scholar 

  • Sun G, Mu M. 2017. Projections of soil carbon using the combination of the CNOP-P method and GCMs from CMIP5 under RCP4.5 in North-South Transect of Eastern China. Plant Soil, 413: 243–260

    Article  Google Scholar 

  • Sutton M A, Simpson D, Levy P E, Smith R I, Reis S, van Oijen M, de Vries W. 2008. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. Glob Change Biol, 14: 2057–2063

    Article  Google Scholar 

  • Tohjima Y, Mukai H, Machida T, Hoshina Y, Nakaoka S I. 2019. Global carbon budgets estimated from atmospheric O2/N2 and CO2 observations in the western Pacific region over a 15-year period. Atmos Chem Phys, 19: 9269–9285

    Article  Google Scholar 

  • Townsend A R, Braswell B H, Holland E A, Penner J E. 1996. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol Appl, 6: 806–814

    Article  Google Scholar 

  • Trumbore S E, Czimczik C I. 2008. An uncertain future for soil carbon. Science, 321: 1455–1456

    Article  Google Scholar 

  • Valentino F L, Leuenberger M, Uglietti C, Sturm P. 2008. Measurements and trend analysis of O2, CO2 and δ13C of CO2 from the high altitude research station Junfgraujoch, Switzerland—A comparison with the observations from the remote site Puy de Dôme, France. Sci Total Environ, 391: 203–210

    Article  Google Scholar 

  • van der Laan S, van der Laan-Luijkx I T, Rödenbeck C, Varlagin A, Shironya I, Neubert R E M, Ramonet M, Meijer H A J. 2014. Atmospheric CO2, δ(O2/N2), APO and oxidative ratios from aircraft flask samples over Fyodorovskoye, Western Russia. Atmos Environ, 97: 174–181

    Article  Google Scholar 

  • Wang T, Lin X, Peng S, Cong N, Piao S. 2014. Multimodel projections and uncertainties of net ecosystem production in China over the twenty-first century. Chin Sci Bull, 59: 4681–4691

    Article  Google Scholar 

  • Whittinghill K A, Currie W S, Zak D R, Burton A J, Pregitzer K S. 2012. Anthropogenic N deposition increases soil C storage by decreasing the extent of litter decay: Analysis of field observations with an ecosystem model. Ecosystems, 15: 450–461

    Article  Google Scholar 

  • Worrall F, Clay G D, Masiello C A, Mynheer G. 2013. Estimating the oxidative ratio of the global terrestrial biosphere carbon. Biogeochemistry, 115: 23–32

    Article  Google Scholar 

  • Worrall F, Moody C S, Clay G D, Burt T P, Rose R. 2017. The flux of organic matter through a peatland ecosystem: The role of cellulose, lignin, and their control of the ecosystem oxidation state. J Geophys Res-Biogeosci, 122: 1655–1671

    Article  Google Scholar 

  • Yang X, Wang M. 2001. A simple model in calculating average soil respiration rate and soil carbon density (in Chinese). J Graduate School Chin Acad Sci, 18: 90–96

    Google Scholar 

  • Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S. 2009. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sci Online Lett Atmos Sola, 5: 160–163

    Google Scholar 

  • Yu P, Han D, Liu S, Wen X, Huang Y, Jia H. 2018. Soil quality assessment under different land uses in an alpine grassland. Catena, 171: 280–287

    Article  Google Scholar 

  • Zhou Z, Zhang Z, Zha T, Luo Z, Zheng J, Sun O J. 2013. Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biol Biochem, 57: 135–143

    Article  Google Scholar 

  • Zhu Z, Liu Y, Liu Z, Piao S. 2018. Projection of changes in terrestrial ecosystem net primary productivity under future global warming scenarios based on CMIP5 models (in Chinese). Clim Change Res, 14: 31–39

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the World Climate Recruitment Programme’s Working Group on Coupled Modelling and the Global Organization for Earth System Science Portals for producing the CMIP6 model simulations and making them available for analysis. They can be downloaded at https://esgf-node.llnl.gov/search/cmip6/. The carbon flux database from the GFED4 database can be downloaded from https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html. This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41521004 and 41991231), the China University Research Talents Recruitment Program (Grant No. B13045) and the Fundamental Research Funds for the Central Universities (Grant Nos. lzujbky-2021-kb12 and lzujbky-2021-63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian** Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Huang, J., Li, C. et al. Variations in terrestrial oxygen sources under climate change. Sci. China Earth Sci. 65, 1810–1823 (2022). https://doi.org/10.1007/s11430-021-9956-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9956-5

Keywords

Navigation