Log in

Lithospheric structure beneath Ordos Block and surrounding areas from joint inversion of receiver function and surface wave dispersion

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Ordos Block has undergone rapid uplift, and a series of rift basins have been formed around the block since the Cenozoic, but the formation mechanisms remain controversial. High-resolution 3D velocity structure of crust and mantle is important for understanding lithospheric deformation and deep dynamic process Here we present a 3D S-wave velocity structure of the crust and upper mantle in the Ordos Block and surrounding regions by joint inversion of receiver functions and surface wave data from a dense broadband seismic deployment. The lithosphere of the Ordos Block exhibits an obvious high-velocity anomaly. In the east and north of the Ordos and the southwestern part of the Tibetan Plateau, obvious low-velocity anomalies are detected in the upper mantle and extend into the Ordos The lithosphere of the Ordos Block is thick in the center and thin in the edge, while the crust is relatively thin in the center and thick in the southwest and northeast. The crustal thickness of the tensional basin in the north is greater than that in the central Ordos. We suggest that the outward expansion of the mantle thermal materials in eastern Tibet and the upper mantle thermal upwelling in the eastern part of the North China Craton lead to the non-uniform lithospheric thinning, temperature rise and density reduction of the Ordos Block. The additional buoyancy and thermodynamic effects provided by them contributed to the continuous uplift of the Ordos Block since the Cenozoic. Influenced by the extrusion of Tibetan Plateau, the crustal thickening and rapid uplift occur in the southwestern and northern parts of the Ordos Block. The lithospheric structures of the Alxa and Ordos Blocks are different, and they may belong to different independent blocks before the Mesozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai S, Zheng Y, Riaz M S, Song M, Zeng S, **e Z. 2019. Seismic evidence on different rifting mechanisms in southern and northern segments of the Fenhe-Weihe Rift zone. J Geophys Res-Solid Earth, 124: 609–630

    Article  Google Scholar 

  • An M, Feng M, Zhao Y. 2009. Destruction of lithosphere within the north China craton inferred from surface wave tomography. Geochem Geophys Geosyst, 10: Q08016

    Article  Google Scholar 

  • Ballard S, Pollack H N. 1987. Diversion of heat by Archean cratons: A model for southern Africa. Earth Planet Sci Lett, 85: 253–264

    Article  Google Scholar 

  • Bao X, Song X, Xu M, Wang L, Sun X, Mi N, Yu D, Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth Planet Sci Lett, 369–370: 129–137

    Article  Google Scholar 

  • Birch F. 1961. Composition of the Earth’s Mantle. Geophys J Int, 4: 295–311

    Article  Google Scholar 

  • Cai G Y, Wang W L, Wu J P, Fang L H. 2021. Surface wave tomography based on Eikonal tomography in Ordos and adjacent areas (in Chinese). Chin J Geophy, 64: 1215–1226

    Google Scholar 

  • Chen G D. 1994. Crustobody Geotectonic Map of Asia Continent and Adjacent Seas (1:8,000,000) (in both Chinese and English). Bei**g: Science Press

    Google Scholar 

  • Chen J H, Liu Q Y, Li S C, Guo B, Lai Y G. 2005. Crust and upper mantle S wave velocity structure across Northeastern Tibetan Plateau and Ordos Block (in Chinese). Chin J Geophy, 48: 333–342

    Google Scholar 

  • Chen L, Jiang M, Yang J, Wei Z, Liu C, Ling Y. 2014. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton. Geology, 42: 223–226

    Article  Google Scholar 

  • Chen Y F, Chen J H, Guo B, Li S C, Qi S H, Zhao P P, Li X Z. 2020. Denoising the receiver function through curvelet transforming and migration imaging (in Chinese). Chin J Geophy, 62: 2027–2037

    Google Scholar 

  • Dan W, Li X H, Wang Q, Wang X C, Wyman D A, Liu Y. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry. Gondwana Res, 32: 105–121

    Article  Google Scholar 

  • Deng Q D, Cheng S P, Min W, Yang G Z, Reng D W. 1999. Disscusion on cenozoic tectonics and dynamics of Ordos Block (in Chinese). J Geomech, 5: 13–21

    Google Scholar 

  • Fu S T, Fu J H, Yu J, Zhang J L, Zhang C L, Ma Z R, Yang Y J, Zhang Y. 2018. Petroleum geological features and exploration prospect of Linhe Depression in Hetao Basin, China. Petrol Explor Dev (in Chinese), 45: 749–762

    Google Scholar 

  • Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 198: 307–322

    Article  Google Scholar 

  • Göğüş. O H, Pysklywec R N, Şengör AMC, Gün E. 2017. Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nat Commun, 8: 1538

    Article  Google Scholar 

  • Guo Z, Chen Y J. 2017. Mountain building at northeastern boundary of tibetan plateau and craton reworking at ordos block from joint inversion of ambient noise tomography and receiver functions. Earth Planet Sci Lett, 463: 232–242

    Article  Google Scholar 

  • Hao M, Wang Q, Cui D, Liu L, Zhou L. 2016. Present-day crustal vertical motion around the Ordos Block constrained by precise leveling and GPS Data. Surv Geophys, 37: 923–936

    Article  Google Scholar 

  • Huang J Q, Ren J S, Jiang C F, Zhang Z M, Xu Z Q. 1977. An outline of the tectonic characteristics of China (in Chinese). Acta Geol Sin, 2: 117–135

    Google Scholar 

  • Huang J, Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305

    Google Scholar 

  • Huang Z, Li H, Zheng Y, Peng Y. 2009. The lithosphere of North China Craton from surface wave tomography. Earth Planet Sci Lett, 288: 164–173

    Article  Google Scholar 

  • Jia S, Wang F, Tian X, Duan Y, Zhang J, Liu B, Lin J. 2014. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile. Tectonophysics, 627: 48–56

    Article  Google Scholar 

  • Jiang G, Hu S, Shi Y, Zhang C, Wang Z, Hu D. 2019. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics, 753: 36–48

    Article  Google Scholar 

  • ** G, Gaherty J B. 2015. Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophys J Int, 201: 1383–1398

    Article  Google Scholar 

  • Kaban M K, Schwintzer P. 2001. Oceanic upper mantle structure from experimental scaling of VS and density at different depths. Geophys J Int, 147: 199–214

    Article  Google Scholar 

  • Krystopowicz N J, Currie C A. 2013. Crustal eclogitization and lithosphere delamination in orogens. Earth Planet Sci Lett, 361: 195–207

    Article  Google Scholar 

  • Lei J. 2012. Upper-mantle tomography and dynamics beneath the North China Craton. J Geophys Res, 117: B06313

    Google Scholar 

  • Levandowski W, Jones C H, Shen W, Ritzwoller M H, Schulte-Pelkum V. 2014. Origins of topography in the western U.S.: Map** crustal and upper mantle density variations using a uniform seismic velocity model. J Geophys Res-Solid Earth, 119: 2375–2396

    Article  Google Scholar 

  • Li C, van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res, 115: B07308

    Google Scholar 

  • Li S L, Zhang X K, Zhang C K, Zhao J R, Cheng S X. 2002. A preliminary study on the crustal velocity structure of Maqin-Lanzhou-**gbian by means of deep sesimic sounding profile (in Chinese). Chin J Geophys, 45: 210–217

    Google Scholar 

  • Li S, Guo Z, Chen Y J, Yang Y, Huang Q. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography. J Geophys Res-Solid Earth, 123: 6940–6957

    Google Scholar 

  • Li Y H, Wu Q J, An Z H, Tian X B, Zeng R S, Zhang R Q, Li H G. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions (in Chinese). Chin J Geophys, 49: 1359–1368

    Google Scholar 

  • Lin F C, Ritzwoller M H, Snieder R. 2009. Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophys J Int, 177: 1091–1110

    Article  Google Scholar 

  • Liu J, Wu J, Wang W, Cai Y, Fang L. 2021. Seismic anisotropy and implications for lithospheric deformation beneath the Ordos Block and surrounding regions. Geophys J Int, 226: 1885–1896

    Article  Google Scholar 

  • Liu W S, Qin M K, Qi F C, **ao S Q, Wang Z M. 2008. Analysis on the Meso-Neozoic subsidence and uplift history of the periphery of Ordos basin using apatite fission track (in Chinese). Ur Geol, 24: 221–227

    Google Scholar 

  • Lv Z Y, Wu J P. 2010. 3-D P wave velocity structure of crust and upper mantle beneath North China (in Chinese). Acta Seismol Sin, 32: 1–11

    Google Scholar 

  • Ma X Y, Wu W Z, Tan Y J, Hao C R. 1979. Tectonics of the North China platform basement. Acta Geol Sin, 4: 293–304

    Google Scholar 

  • Niu Y, Green D H. 2018. The petrological control on the lithosphereasthenosphere boundary (LAB) beneath ocean basins. Earth-Sci Rev, 185: 301–307

    Article  Google Scholar 

  • O’Reilly S Y, Griffin W L. 2013. Moho vs crust-mantle boundary: Evolution of an idea. Tectonophysics, 609: 535–546

    Article  Google Scholar 

  • Parsons B, Sclater J G. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res, 82: 803–827

    Article  Google Scholar 

  • Priestley K, McKenzie D. 2006. The thermal structure of the lithosphere from shear wave velocities. Earth Planet Sci Lett, 244: 285–301

    Article  Google Scholar 

  • Ren J S, Jiang C F, Zhang Z K, Qin D Y. 1980. Geotectonic Evolution of China (in Chinese). Bei**g: Science Press. 1–124

    Google Scholar 

  • Ren Z L, Zhang S, Gao S L, Cui J P, **ao Y Y, **ao H. 2007. Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in Ordos Basin. Sci China Ser D-Earth Sci, 50: 27–38

    Article  Google Scholar 

  • Santosh M, Zhao D, Kusky T. 2010. Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography. J Geodyn, 49: 39–53

    Article  Google Scholar 

  • Slagstad T, Balling N, Elvebakk H, Midttømme K, Olesen O, Olsen L, Pascal C. 2009. Heat-flow measurements in Late Palaeoproterozoic to Permian geological provinces in south and central Norway and a new heat-flow map of Fennoscandia and the Norwegian-Greenland Sea. Tectonophysics, 473: 341–361

    Article  Google Scholar 

  • Stein S, Stein C A. 1996. Thermo-mechanical evolution of oceanic lithosphere: Implications for the subduction processes and deep earthquakes. Am Geophys Univ Monogr, 96: 1–17

    Google Scholar 

  • Tang Y, Chen Y J, Zhou S, Ning J, Ding Z. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography. J Geophys Res-Solid Earth, 118: 2333–2346

    Article  Google Scholar 

  • Teng J W, Wang F Y, Zhao W Z, Zhang Y Q, Zhang X K, Yan Y F, Zhao J R, Li M, Yang H, Zhang H S, Ruan X M. 2010. Velocity structure of layered block and deep dynamic process in the lithosphere beneath the Yinshan orogenic belt and Ordos Basin (in Chinese). Chin J Geophys, 53: 67–85

    Google Scholar 

  • Thybo H, Artemieva I M. 2013. Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609: 605–619

    Article  Google Scholar 

  • Tian X, Bai Z, Klemperer S L, Liang X, Liu Z, Wang X, Yang X, Wei Y, Zhu G. 2021. Crustal-scale wedge tectonics at the narrow boundary between the Tibetan Plateau and Ordos Block. Earth Planet Sci Lett, 554: 116700

    Article  Google Scholar 

  • Tian X, Teng J, Zhang H, Zhang Z, Zhang Y, Yang H, Zhang K. 2011. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis. Phys Earth Planet Inter, 184: 186–193

    Article  Google Scholar 

  • Tian Y, Zhao D, Sun R, Teng J. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton. Phys Earth Planet Inter, 172: 169–182

    Article  Google Scholar 

  • Tian Y, Zhao D. 2011. Destruction mechanism of the North China Craton: Insight from P and S wave mantle tomography. J Asian Earth Sci, 42: 1132–1145

    Article  Google Scholar 

  • Wang C Y, Yang W C, Wu J P, Ding Z F. 2015. Study on the lithospheric structure and earthquakes in North-South Tectonic Belt (in Chinese). Chin J Geophys, 58: 3867–3901

    Google Scholar 

  • Wang W, Wu J, Fang L, Lai G, Cai Y. 2017a. Sedimentary and crustal thicknesses and Poisson’s ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays. Earth Planet Sci Lett, 462: 76–85

    Article  Google Scholar 

  • Wang W, Wu J, Fang L, Lai G, Cai Y. 2017b. Crustal thickness and Poisson’s ratio in southwest China based on data from dense seismic arrays. J Geophys Res-Solid Earth, 122: 7219–7235

    Article  Google Scholar 

  • Wei W, Xu J, Zhao D, Shi Y. 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism. J Asian Earth Sci, 60: 88–103

    Article  Google Scholar 

  • Wu F Y, Xu Y G, Gao S, Zheng J P. 2008. Lithospheric thinning and destruction of the North China Craton (in Chinese). Acta Petrol Sin, 24: 1145–1174

    Google Scholar 

  • Wu J P, Huang Y, Zhang T Z, Ming Y H, Fang L H. 2009. After shock distribution of the Ms8.0 Wenchuan earthquake and three dimensional P wave velocity structure in and around source region (in Chinese). Chin J Geophys, 52: 320–328

    Google Scholar 

  • Wu J P, Ming Y H, Wang C Y. 2006. Regional waveform inversion for crustal and upper mantle velocity struture below Chuandian region (in Chinese). Chin J Geophys, 49: 1369–1376

    Article  Google Scholar 

  • Wu Q J, Tian X B, Zhang N L, Li W P, Zeng R S. 2003. Receiver function estimated by maximum entrory deconvolution (in Chinese). Acta Seismol Sin, 25: 382–389

    Google Scholar 

  • **ao X, Cheng S, Wu J, Wang W, Sun L, Wang X, Wen L. 2021. Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function. Geophys J Int, 225: 998–1019

    Article  Google Scholar 

  • Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757

    Article  Google Scholar 

  • Yao Z, Eric S, Wang C, Ding Z, Chen Y. 2020. Asthenospheric upwelling beneath northeastern margin of Ordos Block: Constraints from Rayleigh surface-wave tomography. Tectonophysics, 790: 228548

    Article  Google Scholar 

  • Zhang J, Li J, **ao W, Wang Y, Qi W. 2013. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China: New constraints on the relationship between the North China Plate and the Alxa Block. J Struct Geol, 57: 38–57

    Article  Google Scholar 

  • Zhang P, Yao H. 2017. Stepwise joint inversion of surface wave dispersion, Rayleigh wave ZH ratio, and receiver function data for 1D crustal shear wave velocity structure. Earthq Sci, 30: 229–238

    Article  Google Scholar 

  • Zhang Y Q, Liao C Z, Shi W, Hu B. 2006. Noetectonic evolution of the Peripheral zones of the Ordos Basin and geophysic setting (in Chinese). Geol J China Univ, 12: 285–297

    Google Scholar 

  • Zhao G, Cawood P A, Li S, Wilde S A, Sun M, Zhang J, He Y, Yin C. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res, 222–223: 55–76

    Article  Google Scholar 

  • Zhao L, Allen R M, Zheng T, Hung S H. 2009. Reactivation of an Archean craton: Constraints from P- and S-wave tomography in North China. Geophys Res Lett, 36: L17306

    Article  Google Scholar 

  • Zheng Y, Shen W, Zhou L, Yang Y, **e Z, Ritzwoller M H. 2011. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. J Geophys Res, 116: B12312

    Article  Google Scholar 

  • Zhong S J, Wu J P, Fang L H, Wang W L, Fan L P, Wang H F. 2017. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan Plateau (in Chinese). Chin J Geophys, 60: 2304–2314

    Google Scholar 

  • Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797

    Article  Google Scholar 

  • Zhu R X, Zhu G, Li J C. 2020. Destruction of the North China Craton. Bei**g: Science Press

    Google Scholar 

  • Zou H P, Zhang K, Li G. 2008. Cretaceous tectono-thermal event in the Ordos Block: An Ar-Ar chronlogical evidence from basalt at Hang** Banner, Inner Mongolia, North China Craton. Geotect Metallogen, 32: 360–364

    Google Scholar 

Download references

Acknowledgements

We thank the Earthquake Science Data Center, Institute of Geophysics, China Earthquake Administration for providing seismic waveform data for this study. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41774102, 41804062 and 41804057) and the Special Funds for Basic Scientific Research Business Fees of Institute of Geophysics, China Earthquake Administration (Grant Nos. DQJB20K41, DQJB16A03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian** Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liu, Y., Zhong, S. et al. Lithospheric structure beneath Ordos Block and surrounding areas from joint inversion of receiver function and surface wave dispersion. Sci. China Earth Sci. 65, 1399–1413 (2022). https://doi.org/10.1007/s11430-021-9895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9895-0

Keywords

Navigation