Log in

Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects

  • Progress
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

China announced its national goal to reach the peak of carbon emission by 2030 and achieve carbon neutrality by 2060, during the General Assembly of the United Nations in September 2020. In this context, the potential of the carbon sink in China’s terrestrial ecosystems to mitigate anthropogenic carbon emissions has attracted unprecedented attention from scientific communities, policy makers and the public. Here, we reviewed the assessments on China’s terrestrial ecosystem carbon sink, with focus on the principles, frameworks and methods of terrestrial ecosystem carbon sink estimates, as well as the recent progress and existing problems. Looking forward, we identified critical issues for improving the accuracy and precision of China’s terrestrial ecosystem carbon sink, in order to serve the more realistic policy making in pathways to achieve carbon neutrality for China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu S, Lehman S J, Miller J B, Andrews A E, Sweeney C, Gurney K R, Xu X, Southon J, Tans P P. 2020. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. Proc Natl Acad Sci USA, 117: 13300–13307

    Article  Google Scholar 

  • Bonan G B, Doney S C. 2018. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 359: eaam8328

    Article  Google Scholar 

  • Bousquet P, Peylin P, Ciais P, Le Quere C, Friedlingstein P, Tans P P. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290: 1342–1346

    Article  Google Scholar 

  • Campbell J E, Berry J A, Seibt U, Smith S J, Montzka S A, Launois T, Belviso S, Bopp L, Laine M. 2017. Large historical growth in global terrestrial gross primary production. Nature, 544: 84–87

    Article  Google Scholar 

  • Chen B, Zhang H, Wang T, Zhang X. 2021. An atmospheric perspective on the carbon budgets of terrestrial ecosystems in China: Progress and challenges. Sci Bull, 66: 1713–1718

    Article  Google Scholar 

  • Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi R K, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu Z, Nemani R R, Myneni R B. 2019. China and India lead in greening of the world through land-use management. Nat Sustain, 2: 122–129

    Article  Google Scholar 

  • Chen H, Yang G, Peng C, Zhang Y, Zhu D, Zhu Q, Hu J, Wang M, Zhan W, Zhu E, Bai Z, Li W, Wu N, Wang Y, Gao Y, Tian J, Kang X, Zhao X, Wu J. 2014. The carbon stock of alpine peatlands on the Qinghai-Tibetan Plateau during the Holocene and their future fate. Quat Sci Rev, 95: 151–158

    Article  Google Scholar 

  • Chevallier F, Remaud M, O’Dell C W, Baker D, Peylin P, Cozic A. 2019. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos Chem Phys, 19: 14233–14251

    Article  Google Scholar 

  • Ciais P, Borges A V, Abril G, Meybeck M, Folberth G, Hauglustaine D, Janssens I A. 2006. The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences, 5: 1259–1271

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J F, Sanz M J, Schulze E D, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437: 529–533

    Article  Google Scholar 

  • Ciais P, Yao Y, Gasser T, Baccini A, Wang Y, Lauerwald R, Peng S, Bastos A, Li W, Raymond P A, Canadell J G, Peters G P, Andres R J, Chang J, Yue C, Dolman A J, Haverd V, Hartmann J, Laruelle G, Konings A G, King A W, Liu Y, Luyssaert S, Maignan F, Patra P K, Peregon A, Regnier P, Pongratz J, Poulter B, Shvidenko A, Valentini R, Wang R, Broquet G, Yin Y, Zscheischler J, Guenet B, Goll D S, Ballantyne A P, Yang H, Qiu C, Zhu D. 2021. Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. Natl Sci Rev, 8: nwaa145

    Article  Google Scholar 

  • Ding J Z, Wang T, Piao S L, Smith P, Zhang G L, Yan Z J, Ren S, Liu D, Wang S P, Chen S Y, Dai F Q, He J S, Li Y N, Liu Y W, Mao J F, Arain A, Tian H Q, Shi X Y, Yang Y H, Zeng N, Zhao L. 2019. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nat Commun, 10: 4195

    Article  Google Scholar 

  • Dixon R K, Solomon A M, Brown S, Houghton R A, Trexier M C, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science, 263: 185–190

    Article  Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 282: 442–446

    Article  Google Scholar 

  • Fang J, Chen A, Peng C, Zhao S, Ci L. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292: 2320–2322

    Article  Google Scholar 

  • Fang J Y, Chen A P, Peng C H, Zhao S Q, Ci L J. 2018. Climate change, human impacts, and carbon sequestration in China. Proc Natl Acad Sci USA, 115: 4015–4020

    Article  Google Scholar 

  • Field C B, Fung I Y. 1999. The not-so-big U.S. carbon sink. Science, 285: 544–545

    Article  Google Scholar 

  • Fisher R A, Koven C D. 2020. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J Adv Model Earth Syst, 12: e2018MS001453

    Article  Google Scholar 

  • Friedlingstein P, O’Sullivan M, Jones M W, Andrew R M, Hauck J, Olsen A, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell J G, Ciais P, Jackson R B, Alin S, Aragão L E O C, Arneth A, Arora V, Bates N R, Becker M, Benoit-Cattin A, Bittig H C, Bopp L, Bultan S, Chandra N, Chevallier F, Chini L P, Evans W, Florentie L, Forster P M, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton R A, Ilyina T, Jain A K, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken J I, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, O’Brien K, Ono T, Palmer P I, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith A J P, Sutton A J, Tanhua T, Tans P P, Tian H, Tilbrook B, van der Werf G, Vuichard N, Walker A P, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W, Yue X, Zaehle S. 2020. Global carbon budget 2020. Earth Syst Sci Data, 12: 3269–3340

    Article  Google Scholar 

  • Fu B J. 2018. Thoughts on the recent development of physical geography (in Chinese). Prog Geog, 37: 1–7

    Google Scholar 

  • Gurney K R, Law R M, Denning A S, Rayner P J, Baker D, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fan S, Fung I Y, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak B C, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen C W. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415: 626–630

    Article  Google Scholar 

  • He H L, Wang S Q, Zhang L, Wang J B, Ren X L, Zhou L, Piao S L, Yan H, Ju W M, Gu F X, Yu S Y, Yang Y H, Wang M M, Niu Z G, Ge R, Yan H M, Huang M, Zhou G Y, Bai Y F, **e Z Q, Tang Z Y, Wu B F, Zhang L M, He N P, Wang Q F, Yu G R. 2019. Altered trends in carbon uptake in China’s terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. Natl Sci Rev, 6: 505–514

    Article  Google Scholar 

  • Holland E A, Brown S, Potter C S, Fan S A K, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P. 1999. North American carbon sink. Science, 283: 1815

    Article  Google Scholar 

  • Hong S B, Yin G D, Piao S L, Dybzinski R, Cong N, Li X Y, Wang K, Penuelas J, Zeng H, Chen A P. 2020. Divergent responses of soil organic carbon to afforestation. Nat Sustain, 3: 694–700

    Article  Google Scholar 

  • Houghton R A, Hackler J L, Lawrence K T. 1999. The US carbon budget: Contributions from land-use change. Science, 285: 574–578

    Article  Google Scholar 

  • IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Janssens I A, Freibauer A, Ciais P, Smith P, Nabuurs G J, Folberth G, Schlamadinger B, Hutjes R W A, Ceulemans R, Schulze E D, Valentini R, Dolman A J. 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 300: 1538–1542

    Article  Google Scholar 

  • Jiang F, Chen J M, Zhou L X, Ju W M, Zhang H F, Machida T, Ciais P, Peters W, Wang H M, Chen B Z, Liu L X, Zhang C H, Matsueda H, Sawa Y. 2016. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Sci Rep, 6: 22130

    Article  Google Scholar 

  • Jung M, Reichstein M, Margolis H A, Cescatti A, Richardson A D, Arain M A, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law B E, Lindroth A, Merbold L, Montagnani L, Moors E J, Papale D, Sottocornola M, Vaccari F, Williams C. 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res, 116: G00J07

    Google Scholar 

  • Keeling R F, Graven H D, Welp L R, Resplandy L, Bi J, Piper S C, Sun Y, Bollenbacher A, Meijer H A J. 2017. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proc Natl Acad Sci USA, 114: 10361–10366

    Article  Google Scholar 

  • King A W, Andres R J, Davis K J, Hafer M, Hayes D J, Huntzinger D N, de Jong B, Kurz W A, McGuire A D, Vargas R, Wei Y, West T O, Woodall C W. 2015. North America’s net terrestrial CO2 exchange with the atmosphere 1990–2009. Biogeosciences, 12: 399–414

    Article  Google Scholar 

  • Le Quéré C, Andrew R M, Friedlingstein P, Sitch S, Pongratz J, Manning A C, Ivar Korsbakken J, Peters G P, Canadell J G, Jackson R B, Boden T A, Tans P P, Andrews O D, Arora V K, Bakker D C E, Barbero L, Becker M, Betts R A, Bopp L, Chevallier F, Chini L P, Ciais P, Cosca C E, Cross J, Currie K, Gasser T, Harris I, Hauck J, Haverd V, Houghton R A, Hunt C W, Hurtt G, Ilyina T, Jain A K, Kato E, Kautz M, Keeling R F, Klein Goldewijk K, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lima I, Lombardozzi D, Metzl N, Millero F, Monteiro P M S, Munro D R, Nabel J E M S, Nakaoka S I, Nojiri Y, Antonio Padin X, Peregon A, Pfeil B, Pierrot D, Poulter B, Rehder G, Reimer J, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Stocker B D, Tian H, Tilbrook B, Tubiello F N, Laan-Luijkx I T V, Werf G R V, Van Heuven S, Viovy N, Vuichard N, Walker AP, Watson A J, Wiltshire A J, Zaehle S, Zhu D. 2018. Global carbon budget 2017. Earth Syst Sci Data, 10: 405–448

    Article  Google Scholar 

  • Li Y, Wang Y G, Houghton R A, Tang L S. 2015. Hidden carbon sink beneath desert. Geophys Res Lett, 42: 5880–5887

    Article  Google Scholar 

  • Lu F, Hu H, Sun W, Zhu J, Liu G, Zhou W, Zhang Q, Shi P, Liu X, Wu X, Zhang L, Wei X, Dai L, Zhang K, Sun Y, Xue S, Zhang W, **ong D, Deng L, Liu B, Zhou L, Zhang C, Zheng X, Cao J, Huang Y, He N, Zhou G, Bai Y, **e Z, Tang Z, Wu B, Fang J, Liu G, Yu G. 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc Natl Acad Sci USA, 115: 4039–4044

    Article  Google Scholar 

  • Pacala S W, Hurtt G C, Baker D, Peylin P, Houghton R A, Birdsey R A, Heath L, Sundquist E T, Stallard R F, Ciais P, Moorcroft P, Caspersen J P, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon M E, Fan S M, Sarmiento J L, Goodale C L, Schimel D, Field C B. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science, 292: 2316–2320

    Article  Google Scholar 

  • Pan Y D, Birdsey R A, Fang J Y, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Josep G, Ciais P, Jackson R B, Pacala S, Mcguire A D, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science, 333: 988–993

    Article  Google Scholar 

  • Peylin P, Law R M, Gurney K R, Chevallier F, Jacobson A R, Maki T, Niwa Y, Patra P K, Peters W, Rayner P J, Rödenbeck C, van der Laan-Luijkx I T, Zhang X. 2013. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences, 10: 6699–6720

    Article  Google Scholar 

  • Piao S L, Fang J Y, Ciais P, Peylin P, Huang Y, Sitch S, Wang T. 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458: 1009–1013

    Article  Google Scholar 

  • Piao S L, Huang M T, Liu Z, Wang X H, Ciais P, Canadell J G, Wang K, Bastos A, Friedlingstein P, Houghton R A, Le Q C, Liu Y, Myneni R B, Peng S S, Pongratz J, Sitch S, Yan T, Wang Y, Zhu Z C, Wu D H, Wang T. 2018. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat Geosci, 11: 739–743

    Article  Google Scholar 

  • Piao S L, Liu Z, Wang T, Peng S S, Ciais P, Huang M T, Ahlstrom A, Burkhart J F, Chevallier F, Janssens I A, Jeong S J, Lin X, Mao J F, Miller J, Mohammat A, Myneni R B, Peñuelas J, Shi X Y, Stohl A, Yao Y T, Zhu Z C, Tans P P. 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat Clim Change, 7: 359–363

    Article  Google Scholar 

  • Piao S L, Wang X H, Park T, Chen C, Lian X, He Y, Bjerke J W, Chen A P, Ciais P, Tømmervik H, Nemani R R, Myneni R B. 2020a. Characteristics, drivers and feedbacks of global greening. Nat Rev Earth Environ, 1: 14–27

    Article  Google Scholar 

  • Piao S L, Wang X H, Wang K, Li X Y, Bastos A, Canadell J G, Ciais P, Friedlingstein P, Sitch S. 2020b. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob Change Biol, 26: 300–318

    Article  Google Scholar 

  • Piao S, Zhang X, Chen A, Liu Q, Lian X, Wang X, Peng S, Wu X. 2019. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci China Earth Sci, 62: 1551–1563

    Article  Google Scholar 

  • Pugh T A M, Lindeskog M, Smith B, Poulter B, Arneth A, Haverd V, Calle L. 2019. Role of forest regrowth in global carbon sink dynamics. Proc Natl Acad Sci USA, 116: 4382–4387

    Article  Google Scholar 

  • Raza S, Miao N, Wang P, Ju X, Chen Z, Zhou J, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob Change Biol, 26: 3738–3751

    Article  Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J, Arndt S, Arnosti C, Borges A V, Dale A W, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe D E, Leifeld J, Meysman F J R, Munhoven G, Raymond P A, Spahni R, Suntharalingam P, Thullner M. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci, 6: 597–607

    Article  Google Scholar 

  • Reuter M, Buchwitz M, Hilker M, Heymann J, Bovensmann H, Burrows J P, Houweling S, Liu Y Y, Nassar R, Chevallier F, Ciais P, Marshall J, Reichstein M. 2017. How much CO2 is taken up by the European terrestrial biosphere? Bull Am Meteorol Soc, 98: 665–671

    Article  Google Scholar 

  • Schewe J, Gosling S N, Reyer C, Zhao F, Ciais P, Elliott J, Francois L, Huber V, Lotze H K, Seneviratne S I, van Vliet M T H, Vautard R, Wada Y, Breuer L, Büchner M, Carozza D A, Chang J, Coll M, Deryng D, de Wit A, Eddy T D, Folberth C, Frieler K, Friend A D, Gerten D, Gudmundsson L, Hanasaki N, Ito A, Khabarov N, Kim H, Lawrence P, Morfopoulos C, Müller C, Müller Schmied H, Orth R, Ostberg S, Pokhrel Y, Pugh T A M, Sakurai G, Satoh Y, Schmid E, Stacke T, Steenbeek J, Steinkamp J, Tang Q, Tian H, Tittensor D P, Volkholz J, Wang X, Warszawski L. 2019. State-of-the-art global models underestimate impacts from climate extremes. Nat Commun, 10: 1005

    Article  Google Scholar 

  • Sitch S, Huntingford C, Gedney N, Levy P E, Lomas M, Piao S L, Betts R, Ciais P, Cox P, Friedlingstein P, Jones C D, Prentice I C, Woodward F I. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol, 14: 2015–2039

    Article  Google Scholar 

  • Song X D, Yang F, Wu H Y, Zhang J, Li D C, Liu F, Zhao Y G, Yang J L, Ju B, Cai C F, Huang B, Long H Y, Lu Y, Sui Y Y, Wang Q B, Wu K N, Zhang F R, Zhang M K, Shi Z, Ma W Z, **n G, Qi Z P, Chang Q R, Ci E, Yuan D G, Zhang Y Z, Bai J P, Chen J Y, Chen J, Chen Y J, Dong Y Z, Han C L, Li L, Liu L M, Pan J J, Song F P, Sun F J, Wang D F, Wang T W, Wei X H, Wu H Q, Zhao X, Zhou Q, Zhang G L. 2022. Significant loss of soil inorganic carbon at the continental scale. Natl Sci Rev, 9: nwab120

    Article  Google Scholar 

  • Stephens B B, Gurney K R, Tans P P, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds R L, Steele L P, Francey R J, Denning A S. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316: 1732–1735

    Article  Google Scholar 

  • Sun J, Liu M, Fu B J, Kemp D, Zhao W W, Liu G H, Han G D, Wilkes A, Lu X Y, Chen Y C, Cheng G W, Zhou T C, Hou G, Zhan T Y, Peng F, Shang H, Xu M, Shi P L, He Y T, Li M, Wang J N, Tsunekawa A, Zhou H K, Liu Y, Li Y R, Liu S L. 2020. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci Bull, 65: 1405–1414

    Article  Google Scholar 

  • Tian H, Melillo J, Lu C, Kicklighter D, Liu M, Ren W, Xu X, Chen G, Zhang C, Pan S, Liu J, Running S. 2011. China’s terrestrial carbon balance: Contributions from multiple global change factors. Glob Biogeochem Cycle, 25: GB1007

    Article  Google Scholar 

  • Tramontana G, Jung M, Schwalm C R, Ichii K, Camps-Valls G, Ráduly B, Reichstein M, Arain M A, Cescatti A, Kiely G, Merbold L, Serrano-Ortiz P, Sickert S, Wolf S, Papale D. 2016. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 13: 4291–4313

    Article  Google Scholar 

  • Wang J, Feng L, Palmer P I, Liu Y, Fang S, Bösch H, O’Dell C W, Tang X, Yang D, Liu L, **a C Z. 2020. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 586: 720–723

    Article  Google Scholar 

  • Wang Q F, Zheng H, Zhu X J, Yu G R. 2015. Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Sci Bull, 60: 577–590

    Article  Google Scholar 

  • Wang T H, Yang D W, Yang Y T, Piao S L, Li X, Cheng G D, Fu B J. 2020. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci Adv, 6: eaaz3513

    Article  Google Scholar 

  • Wang Y L, Wang X H, Wang K, Chevallier F, Zhu D, Lian J H, He Y, Tian H Q, Li J S, Zhu J X, Jeong S, Canadell J. 2021. The size of land carbon sink in China. Nature, doi: https://doi.org/10.1038/s41586-021-04255-y

  • Yao Y T, Li Z J, Wang T, Chen A P, Wang X H, Du M Y, Jia G S, Li Y N, Li H Q, Luo W J, Ma Y M, Tang Y H, Wang H M, Wu Z X, Yan J H, Zhang X Z, Zhang Y P, Zhang Y, Zhou G S, Piao S L. 2018a. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agric For Meteorol, 253–254: 84–93

    Article  Google Scholar 

  • Yao Y T, Piao S L, Wang T. 2018b. Future biomass carbon sequestration capacity of Chinese forests. Sci Bull, 63: 1108–1117

    Article  Google Scholar 

  • Yu G R, Chen Z, Piao S L, Peng C H, Ciais P, Wang Q F, Li X R, Zhu X J. 2014a. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA, 111: 4910–4915

    Article  Google Scholar 

  • Yu G R, Zhang L M, Sun X M. 2014b. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (China-FLUX) (in Chinese). Prog Geog, 33: 903–917

    Google Scholar 

  • Zhang H F, Chen B Z, van der Laan-Luijkx I T, Chen J, Xu G, Yan J W, Zhou L X, Fukuyama Y, Tans P P, Peters W. 2014. Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J Geophys Res-Atmos, 119: 3500–3515

    Article  Google Scholar 

  • Zhang Y, Yao Y T, Wang X H, Liu Y W, Piao S L. 2017. Map** spatial distribution of forest age in China. Earth Space Sci, 4: 108–116

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yongwen LIU and Dr. Yilong WANG for their help in the writing process. This work was supported by the National Natural Science Foundation of China (Grant No. 41988101) and National Key R&D Program of China (Grant No. 2019YFA0607304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilong Piao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piao, S., He, Y., Wang, X. et al. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 65, 641–651 (2022). https://doi.org/10.1007/s11430-021-9892-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9892-6

Keywords

Navigation