Log in

Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Dolomite genesis is a century-old mystery in sedimentology. To reveal the mechanism of dolomite genesis, two core problems need to be addressed. The first is the origin and migration mechanism of Mg2+-rich fluids during the dolomitization process. The second is the kinetic barrier caused by Mg2+ hydration during dolomite precipitation at low temperatures. To address these problems, our study, based on detailed petrological, sedimentological, geochemical (major and trace elements), and isotopic (C-O-Mg) analysis, clarified the source and migration of Mg2+-rich fluids and the kinetic barrier mechanism of low-temperature dolomite precipitation in the Upper Sinian Qigebulake Formation and the Lower Cambrian **aoerbulake Formation in the Tarim Basin. First, we found that the Mg2+-rich fluids required for the dolomitization of dolomite in the **aoerbulake Formation were primarily derived from the Early Cambrian marine fluid. At the interface of the sedimentary cycle, δ26Mg values fluctuated considerably, indicating that the sequence interface was the starting point and channel for the migration of dolomitized fluids. Sea level variation plays a major role in controlling the dolomitization process of the **aoerbulake Formation. Second, the Qigebulake Formation contains low-temperature dolomite with Mg2+-rich fluids supplied by seawater, microorganisms, and sedimentary organic matter. Comprehensive analysis shows that the dolomite of the Qigebulake Formation was formed by microbial induction by anaerobic methane bacteria. Finally, the properties and sources of dolomitization fluids and the formation process of dolomite were the reasons for the difference in the Mg isotope composition of dolomite during the Sinian-Cambrian transition. This study reveals the genetic mechanism of the Sinian-Cambrian dolomite in the Tarim Basin and establishes a new method to explain the genesis of microbial dolomite by C-O-Mg isotopes, providing a reference for the reconstruction of the formation and evolution of dolomites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams A, Diamond L W, Aschwanden L. 2019. Dolomitization by hypersaline reflux into dense groundwaters as revealed by vertical trends in strontium and oxygen isotopes: Upper Muschelkalk, Switzerland. Sedimentology, 66: 362–390

    Article  Google Scholar 

  • Adams J E, Rhodes M L. 1960. Dolomitization by seepage refluxion. AAPG Bull, 44: 1912–1920

    Google Scholar 

  • Ahm A S C, Maloof A C, Macdonald F A, Hoffman P F, Bjerrum C J, Bold U, Rose C V, Strauss J V, Higgins J A. 2019. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”. Earth Planet Sci Lett, 506: 292–307

    Article  Google Scholar 

  • Allan J R, Wiggins W D. Dolomite reservoirs. 1993. Dolomite reservoirs: Geochemical techniques for evaluating origin and distribution. AAPG Continuing Education Course Notes Series, 36: 129

    Google Scholar 

  • Allen M B, Vincent S J, Wheeler P J. 1999. Late Cenozoic tectonics of the Ke**tage thrust zone: Interactions of the Tien Shan and Tarim Basin, northwest China. Tectonics, 18: 639–654

    Article  Google Scholar 

  • Alperin M J, Reeburgh W S, Whiticar M J. 1988. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Glob Biogeochem Cycle, 2: 279–288

    Article  Google Scholar 

  • An Y J, Wu F, **ang Y X, Nan X Y, Yu X, Yang J H, Yu H M, **e L W, Huang F. 2014. High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS. Chem Geol, 390: 9–21

    Article  Google Scholar 

  • Anderson M S. 1991. Reactivity of san andres dolomite. SPE Production Eng, 6: 227–232

    Article  Google Scholar 

  • Baker P A, Burns S J. 1985. Occurrence and formation of dolomite in organic-rich continental margin sediments. AAPG Bull, 69: 1917–1930

    Google Scholar 

  • Baker P A, Kastner M. 1981. Constraints on the formation of sedimentary dolomite. Science, 213: 214–216

    Article  Google Scholar 

  • Baldermann A, Deditius A P, Dietzel M, Fichtner V, Fischer C, Hippler D, Leis A, Baldermann C, Mavromatis V, Stickler C P, Strauss H. 2015. The role of bacterial sulfate reduction during dolomite precipitation: Implications from Upper Jurassic platform carbonates. Chem Geol, 412: 1–14

    Article  Google Scholar 

  • Bialik O M, Wang X, Zhao S, Waldmann N D, Frank R, Li W. 2018. Mg isotope response to dolomitization in hinterland-attached carbonate platforms: Outlook of δ26Mg as a tracer of basin restriction and seawater Mg/Ca ratio. Geochim Cosmochim Acta, 235: 189–207

    Article  Google Scholar 

  • Bontognali T R R, Vasconcelos C, Warthmann R J, Bernasconi S M, Dupraz C, Strohmenger C J, McKenzie J A. 2010. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology, 57: 824–844

    Article  Google Scholar 

  • Bontognali T R R, Vasconcelos C, Warthmann R J, Dupraz C, Bernasconi S M, McKenzie J A. 2008. Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36: 663–666

    Article  Google Scholar 

  • Brauchli M, McKenzie J A, Strohmenger C J, Sadooni F, Vasconcelos C, Bontognali T R R. 2016. The importance of microbial mats for dolomite formation in the Dohat Faishakh sabkha, Qatar. Carbonates Evaporites, 31: 339–345

    Article  Google Scholar 

  • Budd D A. 1997. Cenozoic dolomites of carbonate islands: Their attributes and origin. Earth-Sci Rev, 42: 1–47

    Article  Google Scholar 

  • Burns S J, Mckenzie J A, Vasconcelos C. 2000. Dolomite formation and biogeochemical cycles in the Phanerozoic. Sedimentology, 47: 49–61

    Article  Google Scholar 

  • Cai C F, Li K K, Li H T, Zhang B S. 2008. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China. Appl Geochem, 23: 2226–2235

    Article  Google Scholar 

  • Cai W K, Liu J H, Zhou C H, Keeling J, Glasmacher U A. 2021. Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas. Chem Geol, 573: 120191

    Article  Google Scholar 

  • Carder E A, Galy A, McKenzie J A, Vasconcelos C, Elderfield H E. 2005a. Magnesium isotopes in bacterial dolomites: A novel approach to the dolomite problem. Geochim Cosmochim Acta Supplement, 69: A213

    Google Scholar 

  • Carder E A, Galy A, McKenzie J A, Vasconcelos C, Elderfield H. 2005b. Magnesium Isotopic Evidence for Widespread Microbial Dolomite Precipitation in the Geological Record. In: AGU Fall Meeting Abstracts. V41F: 1527

    Google Scholar 

  • Casado A I, Alonso-Zarza A M, La Iglesia Á. 2014. Morphology and origin of dolomite in paleosols and lacustrine sequences: Examples from the Miocene of the Madrid Basin. Sediment Geol, 312: 50–62

    Article  Google Scholar 

  • Chang B, Li C, Liu D, Foster I, Tripati A, Lloyd M K, Maradiaga I, Luo G, An Z, She Z, **e S, Tong J, Huang J, Algeo T J, Lyons T W, Immenhauser A. 2020. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proc Natl Acad Sci USA, 117: 14005–14014

    Article  Google Scholar 

  • Chen Y N, Shen A J, Pan L Y, Zhang J, Wang X F. 2017. Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin, SW China. Pet Explor Dev, 44: 745–757

    Article  Google Scholar 

  • Chen Y, Zhang Y, Wu Y, Zhou P, Li K, Wang X. 2020. Discovery of SPICE and carbon isotope stratigraphic correlation of the Cambrian Furongian Series in Tarim Craton, NW China. Sci China Earth Sci, 63: 1330–1338

    Article  Google Scholar 

  • Corsetti F A, Olcott A N, Bakermans C. 2006. The biotic response to Neoproterozoic snowball Earth. Palaeogeogr Palaeoclimatol Palaeoecol, 232: 114–130

    Article  Google Scholar 

  • Davies G R, SmithJr L B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull, 90: 1641–1690

    Article  Google Scholar 

  • Deelman J C. 2001. Breaking Ostwald’s rule. Chemie Der Erde-Geo-chemistry, 61: 224–235

    Google Scholar 

  • Deng S C, Dong H L, Lv G, Jiang H C, Yu B S, Bishop M E. 2010. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chem Geol, 278: 151–159

    Article  Google Scholar 

  • Derry L A, Brasier M D, Corfield R M, Rozanov A Y, Zhuravlev A Y. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth Planet Sci Lett, 128: 671–681

    Article  Google Scholar 

  • Dong S F, Chen D Z, Qing H R, Zhou X Q, Wang D, Guo Z H, Jiang M S, Qian Y X. 2013. Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry. Mar Pet Geol, 46: 270–286

    Article  Google Scholar 

  • Fantle M S, Higgins J. 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg. Geochim Cosmochim Acta, 142: 458–481

    Article  Google Scholar 

  • Friedman G M, Sanders J E. 1967. Origin and occurrence of dolostones. Developments Sedimentol, 9: 267–348

    Article  Google Scholar 

  • Galy A, Yoffe O, Janney P E, Williams R W, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon I D, Ramon E, Carignan J. 2003. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal At Spectrom, 18: 1352–1356

    Article  Google Scholar 

  • Garzione C N. 2008. Surface uplift of Tibet and Cenozoic global cooling. Geology, 36: 1003

    Article  Google Scholar 

  • Geske A, Goldstein R H, Mavromatis V, Richter D K, Buhl D, Kluge T, John C M, Immenhauser A. 2015a. The magnesium isotope (δ26Mg) signature of dolomites. Geochim Cosmochim Acta, 149: 131–151

    Article  Google Scholar 

  • Geske A, Lokier S, Dietzel M, Richter D K, Buhl D, Immenhauser A. 2015b. Magnesium isotope composition of sabkha porewater and related (Sub-)Recent stoichiometric dolomites, Abu Dhabi (UAE). Chem Geol, 393–394: 112–124

    Article  Google Scholar 

  • Geske A, Zorlu J, Richter D K, Buhl D, Niedermayr A, Immenhauser A. 2012. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chem Geol, 332–333: 45–64

    Article  Google Scholar 

  • Given R K, Wilkinson B H. 1987. Dolomite abundance and stratigraphic age; constraints on rates and mechanisms of Phanerozoic dolostone formation. J Sediment Res, 57: 1068–1078

    Article  Google Scholar 

  • Glumac B, Spivak-Birndorf M L. 2002. Stable isotopes of carbon as an invaluable stratigraphic tool: An example from the Cambrian of the northern Appalachians, USA. Geology, 30: 563–566

    Article  Google Scholar 

  • Goldhammer R K, Dunn P A, Hardie L A. 1990. Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: Examples from Alpine Triassic platform carbonates. GSA Bull, 102: 535–562

    Article  Google Scholar 

  • Gregg J M, Bish D L, Kaczmarek S E, Machel H G. 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology, 62: 1749–1769

    Article  Google Scholar 

  • Guan S W, Zhang C Y, Ren R, Zhang S C, Wu L, Wang L, Ma P L, Han C W. 2019. Early Cambrian syndepositional structure of the northern Tarim Basin and a discussion of Cambrian subsalt and deep exploration. Petrol Explor Develop, 46: 1141–1152

    Article  Google Scholar 

  • Hardie L A. 1987. Dolomitization: A critical view of some current views. J Sediment Res, 57: 166–183

    Article  Google Scholar 

  • He D F, Jia C Z, Li D S, Zhang C J, Meng Q R, Shi X. 2005. Formation and evolution of polycyclic superimposed Tarim Basin (in Chinese). Oil Gas Geol, 26: 64–77

    Google Scholar 

  • Higgins J A, Blättler C L, Lundstrom E A, Santiago-Ramos D P, Akhtar A A, Crüger Ahm A S, Bialik O, Holmden C, Bradbury H, Murray S T, Swart P K. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim Cosmochim Acta, 220: 512–534

    Article  Google Scholar 

  • Higgins J A, Schrag D P. 2010. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim Cosmochim Acta, 74: 5039–5053

    Article  Google Scholar 

  • Higgins J A, Schrag D P. 2015. The Mg isotopic composition of Cenozoic seawater—Evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth Planet Sci Lett, 416: 73–81

    Article  Google Scholar 

  • Hillgärtner H, Strasser A. 2003. Quantification of high-frequency sea-level fluctuations in shallow-water carbonates: An example from the Berriasian-Valanginian (French Jura). Palaeogeogr Palaeoclimatol Palaeoecol, 200: 43–63

    Article  Google Scholar 

  • Hsü K J, Siegenthaler C. 1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12: 11–25

    Article  Google Scholar 

  • Hsü K J. 1980. Chemistry of dolomite formation. Developments Sedimentol, 9: 169–191

    Article  Google Scholar 

  • Hu Z Y, Hu W X, Wang X M, Lu Y Z, Wang L C, Liao Z W, Li W Q. 2017. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy. Geochim Cosmochim Acta, 208: 24–40

    Article  Google Scholar 

  • Hu Z Y, Hu W X, Liu C, Sun F N, Liu Y L, Li W Q. 2019. Conservative behavior of Mg isotopes in massive dolostones: From diagenesis to hydrothermal reworking. Sediment Geol, 381: 65–75

    Article  Google Scholar 

  • Huang K J, Shen B, Lang X G, Tang W B, Peng Y, Ke S, Kaufman A J, Ma H R, Li F B. 2015. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates. Geochim Cosmochim Acta, 164: 333–351

    Article  Google Scholar 

  • Huang S J, Hairuo QING, Pei C R, Hu Z W, Wu S J, Sun Y L. 2006. Strontium content, isotope composition and dolomitization fluids in the Feixianguan Formation of Triassic, Eastern Sichuan of China (in Chinese). Acta Petrol Sin, 22: 2123–2132

    Google Scholar 

  • Irwin H, Curtis C, Coleman M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269: 209–213

    Article  Google Scholar 

  • Jacobson A D, Zhang Z, Lundstrom C, Huang F. 2010. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota. Earth Planet Sci Lett, 297: 446–452

    Article  Google Scholar 

  • Jia C Z, Wei G Q. 2002. Structural Characteristics and oil-bearing property of Tarim Basin (in Chinese). Chin Sci Bull, 47(S1): 1–8

    Article  Google Scholar 

  • Jia C Z. 2009. The structures of basin and range system around the Tibetan plateau and the distribution of oil and gas in the Tarim Basin (in Chinese). Geotect Metal, 33: 1–9

    Google Scholar 

  • ** M D, Tan X C, Li B S, Zhu X, Zeng W, Lian C B. 2019. Genesis of dolomite in the Sinian Dengying Formation in the Sichuan Basin (in Chinese). Acta Sedimentol Sin, 37: 443–454

    Google Scholar 

  • Kaufman A J, Jacobsen S B, Knoll A H. 1993. The vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth Planet Sci Lett, 120: 409–430

    Article  Google Scholar 

  • Kaufman A, Knoll A. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 73: 27–49

    Article  Google Scholar 

  • Kouchinsky A, Bengtson S, Gallet Y, Korovnikov I, Pavlov V, Runnegar B, Shields G, Veizer J, Young E, Ziegler K. 2008. The SPICE carbon isotope excursion in Siberia: A combined study of the upper Middle Cambrian-lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform. Geol Mag, 145: 609–622

    Article  Google Scholar 

  • Laborde A, Barrier L, Simoes M, Li H, Coudroy T, Van der Woerd J, Tapponnier P. 2019. Cenozoic deformation of the Tarim Basin and surrounding ranges (**njiang, China): A regional overview. Earth-Sci Rev, 197: 102891

    Article  Google Scholar 

  • Land L S. 1985. The origin of massive dolomite. J Geol Education, 33: 112–125

    Google Scholar 

  • Land L S. 1998. Failure to precipitate dolomite at 25°C from dilute solution despite 1000-fold oversaturation after 32 years. Aquat Geochem, 4: 361–368

    Article  Google Scholar 

  • Lavoie D, Jackson S, Girard I. 2014. Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of Canada. Sediment Geol, 305: 58–68

    Article  Google Scholar 

  • Li B, Peng J, **a Q S, Yang S J, Hao R Q. 2019. Dolomitization model of Lower Qiulitage Group in Tabei Area (in Chinese). J Jilin Univ-Earth Sci Ed, 49: 310–322

    Google Scholar 

  • Li B, Yan J X, Liu X T, Xue W Q. 2010. The organogenic dolomite model mechanism, progress and significance (in Chinese). J Palaeogeogr, 12: 699–710

    Google Scholar 

  • Li D A, Ling H F, Jiang S Y, Pan J Y, Chen Y Q, Cai Y F, Feng H Z. 2009. New carbon isotope stratigraphy of the Ediacaran—Cambrian boundary interval from SW china: Implications for global correlation. Geol Mag, 146: 465–484

    Article  Google Scholar 

  • Li F B, Teng F Z, Chen J T, Huang K J, Wang S J, Lang X G, Ma H R, Peng Y B, Shen B. 2016. Constraining ribbon rock dolomitization by Mg isotopes: Implications for the ‘dolomite problem’. Chem Geol, 445: 208–220

    Article  Google Scholar 

  • Li Q, Li L, Zhang Y, Guo Z. 2020. Oligocene incursion of the Paratethys seawater to the Junggar Basin, NW China: Insight from multiple isotopic analysis of carbonate. Sci Rep, 10: 6601

    Article  Google Scholar 

  • Li W Q, Beard B L, Li C X, Xu H F, Johnson C M. 2015. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochim Cosmochim Acta, 157: 164–181

    Article  Google Scholar 

  • Li W, Bialik O M, Wang X, Yang T, Hu Z, Huang Q, Zhao S, Waldmann N D. 2019. Effects of early diagenesis on Mg isotopes in dolomite: The roles of Mn(IV)-reduction and recrystallization. Geochim Cosmochim Acta, 250: 1–17

    Article  Google Scholar 

  • Li W Q, Chakraborty S, Beard B L, Romanek C S, Johnson C M. 2012. Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions. Earth Planet Sci Lett, 333–334: 304–316

    Article  Google Scholar 

  • Li X, Zhu G Y, Li T T, Zhou L., Wu Y X, Tian L J. 2022a. Mg isotopic characteristics and genetic mechanism of dolomite of Cambrian **xiangchi Formation in central Sichuan Basin. Acta Petrol Sin, 43: 1585–1603

    Google Scholar 

  • Li X, Zhu G Y, Li T T, Zhou L, Wu Y X, Shen B, Ning M. 2022b. Conservative behavior of Mg isotopes in dolomite during diagenesis and hydrothermal alteration: A case study in the Lower Cambrian Qiulitage Formation, Gucheng area, Tarim Basin. Appl Geochem, 148: 105540

    Article  Google Scholar 

  • Li Y, Jiang H X, Wu Y S, Pan W Q, Zhang B S, Sun C H, Yang G. 2021. Macro- and microfeatures of Early Cambrian dolomitic microbialites from Tarim Basin, China. J Palaeogeogr, 10: 3

    Article  Google Scholar 

  • Lippmann F. 1973. Crystal chemistry of sedimentary carbonate minerals. In: Sedimentary Carbonate Minerals. Berlin, Heidelberg: Springer. 5–96

    Book  Google Scholar 

  • Liu D, Xu Y Y, Papineau D, Yu N, Fan Q G, Qiu X, Wang H M. 2019. Experimental evidence for abiotic formation of low-temperature protodolomite facilitated by clay minerals. Geochim Cosmochim Acta, 247: 83–95

    Article  Google Scholar 

  • Liu D, Xu Y Y, Yu Q Q, Yu N, Qiu X, Wang H M, Papineau D. 2020. Catalytic effect of microbially-derived carboxylic acids on the precipitation of Mg-calcite and disordered dolomite: Implications for sedimentary dolomite formation. J Asian Earth Sci, 193: 104301

    Article  Google Scholar 

  • Liu X M, Teng F Z, Rudnick R L, McDonough W F, Cummings M L. 2014. Massive magnesium depletion and isotope fractionation in weathered basalts. Geochim Cosmochim Acta, 135: 336–349

    Article  Google Scholar 

  • Lu P, Cantrell D. 2016. Reactive transport modelling of reflux dolomitization in the Arab-D reservoir, Ghawar field, Saudi Arabia. Sedimentology, 63: 865–892

    Article  Google Scholar 

  • Machel H G. 2004. Concepts and models of dolomitization: A critical reappraisal. Geol Soc London Spec Publ, 235: 7–63

    Article  Google Scholar 

  • Major R P, Lloyd R M, Lucia F J. 1992. Oxygen isotope composition of Holocene dolomite formed in a humid hypersaline setting. Geology, 20: 586–588

    Article  Google Scholar 

  • Mavromatis V, Gautier Q, Bosc O, Schott J. 2013. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite. Geochim Cosmochim Acta, 114: 188–203

    Article  Google Scholar 

  • Mavromatis V, Meister P, Oelkers E H. 2014. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin. Chem Geol, 385: 84–91

    Article  Google Scholar 

  • Mazzullo S J, Bischoff W D, Teal C S. 1995. Holocene shallow-subtidal dolomitization by near-normal seawater, northern Belize. Geology, 23: 341–344

    Article  Google Scholar 

  • Mazzullo S J. 2000. Organogenic dolomitization in peritidal to deep-sea sediments. J Sediment Res, 70: 10–23

    Article  Google Scholar 

  • McCormack J, Bontognali T R R, Immenhauser A, Kwiecien O. 2018. Controls on cyclic formation of Quaternary early diagenetic dolomite. Geophys Res Lett, 45: 3625–3634

    Article  Google Scholar 

  • McKenzie J A, Vasconcelos C. 2009. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives. Sedimentology, 56: 205–219

    Article  Google Scholar 

  • Mehmood M, Yaseen M, Khan E U, Khan M J. 2018. Dolomite and dolomitization model—A short review. Inter J Hydrol, 2: 549–553

    Article  Google Scholar 

  • Meister P, Gutjahr M, Frank M, Bernasconi S M, Vasconcelos C, McKenzie J A. 2011. Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. Geology, 39: 563–566

    Article  Google Scholar 

  • Meister P, Mckenzie J A, Bernasconi S M, Brack P. 2013. Dolomite formation in the shallow seas of the Alpine Triassic. Sedimentology, 60: 270–291

    Article  Google Scholar 

  • Melim L A, Scholle P A. 2002. Dolomitization of the Capitan Formation forereef facies (Permian, west Texas and New Mexico): Seepage reflux revisited. Sedimentology, 49: 1207–1227

    Article  Google Scholar 

  • Meng H L, Lv Z X, Shen Z M, **ong C H. 2019. Carbon and oxygen isotopic composition of saline lacustrine dolomite cements and its palaeoenvironmental significance: A case study of paleogene Shahejie Formation, Bohai Sea. Minerals, 9: 13

    Article  Google Scholar 

  • Montañez I P, Osleger D A, Banner J L, Mack L E, Musgrove M. 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today, 10: 1–7

    Google Scholar 

  • Moore C H. 2001. Developments in Sedimentology 55: Carbonate Reservoirs-Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework

  • Moore T S, Murray R W, Kurtz A C, Schrag D P. 2004. Anaerobic methane oxidation and the formation of dolomite. Earth Planet Sci Lett, 229: 141–154

    Article  Google Scholar 

  • Murray S T, Higgins J A, Holmden C, Lu C J, Swart P K. 2021. Geochemical fingerprints of dolomitization in Bahamian carbonates: Evidence from sulphur, calcium, magnesium and clumped isotopes. Sedimentology, 68: 1–29

    Article  Google Scholar 

  • Nadeau M D, Kimmig S R, Holmden C. 2019. Basin-wide Gradients in Dolomite δ26Mg and 87Sr/86Sr Identify the Structural Centre of the Williston Basin as a Source of Magnesium for Dolomitization of the Middle Devonian Winnipegosis Formation. Pacific Northwest, 7: 5E2

    Google Scholar 

  • Ning M, Huang K J, Shen B. 2018. Applications and advances of the magnesium isotope on the ‘dolomite problem’. Acta Petrol Sin, 34: 390–3708

    Google Scholar 

  • Ning M, Lang X G, Huang K J, Li C, Huang T Z, Yuan H L, **ng C C, Yang R Y, Shen B. 2020. Towards understanding the origin of massive dolostones. Earth Planet Sci Lett, 545: 116403

    Article  Google Scholar 

  • Peng Y, Shen B, Lang X G, Huang K J, Chen J T, Yan Z, Tang W, Ke S, Ma H R, Li F B. 2016. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China. Geochem Geophys Geosyst, 17: 1109–1129

    Article  Google Scholar 

  • Petrash D A, Bialik O M, Bontognali T R R, Vasconcelos C, Roberts J A, McKenzie J A, Konhauser K O. 2017. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Sci Rev, 171: 558–582

    Article  Google Scholar 

  • Pinilla C, Blanchard M, Balan E, Natarajan S K, Vuilleumier R, Mauri F. 2015. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics. Geochim Cosmochim Acta, 163: 126–139

    Article  Google Scholar 

  • Pokrovsky B G, Mavromatis V, Pokrovsky O S. 2011. Co-variation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: A new tool for tracing the change in weathering regime? Chem Geol, 290:67–74

    Article  Google Scholar 

  • Qian Y X, Wu H Z, Zhou L F, Huang K J, Deng M Z, Li Y, Wang X Q. 2019. Characteristic and origin of dolomites in the third and fourth members of Leikoupo Formation of the Middle Triassic in NW Sichuan Basin: Constraints in mineralogical, petrographic and geochemical data (in Chinese). Acta Petrol Sin, 35: 1161–1180

    Google Scholar 

  • Qing H, Veizer J. 1994. Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater. Geochim Cosmochim Acta, 58: 4429–4442

    Article  Google Scholar 

  • Qiu X, Yao Y C, Wang H M, Shen A J, Zhang J. 2019. Halophilic archaea mediate the formation of proto-dolomite in solutions with various sulfate concentrations and salinities. Front Microbiol, 10: 480

    Article  Google Scholar 

  • Qiu X, Wang H M, Yao Y C, Duan Y. 2017. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52. Earth Planet Sci Lett, 472: 197–205

    Article  Google Scholar 

  • Riding R. 2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47: 179–214

    Article  Google Scholar 

  • Roberts J A, Bennett P C, González L A, Macpherson G L, Milliken K L. 2004. Microbial precipitation of dolomite in methanogenic ground-water. Geology, 32: 277–280

    Article  Google Scholar 

  • Roberts J A, Kenward P A, Fowle D A, Goldstein R H, González L A, Moore D S. 2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc Natl Acad Sci USA, 110: 14540–14545

    Article  Google Scholar 

  • Rustad J R, Casey W H, Yin Q Z, Bylaska E J, Felmy A R, Bogatko S A, Jackson V E, Dixon D A. 2010. Isotopic fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with carbonate minerals. Geochim Cosmochim Acta, 74: 6301–6323

    Article  Google Scholar 

  • Saenger C, Wang Z R. 2014. Magnesium isotope fractionation in biogenic and abiogenic carbonates: Implications for paleoenvironmental proxies. Quat Sci Rev, 90: 1–21

    Article  Google Scholar 

  • Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, Rivadeneyra M A, Vasconcelos C. 2009. Presence of sulfate does not inhibit low-temperature dolomite precipitation. Earth Planet Sci Lett, 285: 131–139

    Article  Google Scholar 

  • Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie J A, Zenobi R, Rivadeneyra M A. 2008. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology, 36: 879–882

    Article  Google Scholar 

  • Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, Romanek C S, Sánchez-Navas A, Vasconcelos C. 2011. Experimentally determined biomediated Sr partition coefficient for dolomite: Significance and implication for natural dolomite. Geochim Cosmochim Acta, 75: 887–904

    Article  Google Scholar 

  • Schauble E A. 2011. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim Cosmochim Acta, 75: 844–869

    Article  Google Scholar 

  • Shalev N, Bontognali T R R, Vance D. 2021. Sabkha dolomite as an archive for the magnesium isotope composition of seawater. Geology, 49: 253–257

    Article  Google Scholar 

  • Shen A J, Zhen J F, Chen Y Q, Ni X F, Huang L L. 2016. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China. Pet Explor Dev, 43: 375–385

    Article  Google Scholar 

  • Shen B, Jacobsen B, Lee C T A, Yin Q Z, Morton D M. 2009. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proc Natl Acad Sci USA, 106: 20652–20657

    Article  Google Scholar 

  • Shen H J, Gu S Y, Zhao S F, Wu Z Y, Feng Y. 2020. The sedimentary geochemical records of ocean environment during the Nantuo (Marinoan) glaciation in South China—Carbon and oxygen isotopes and trace element compositions of dolostone in Nantuo Formation, Nanhuan System, in eastern Guizhou (in Chinese). Geol Rev, 66: 214–228

    Google Scholar 

  • Sibley D F. 1991. Secular changes in the amount and texture of dolomite. Geology, 19: 151

    Article  Google Scholar 

  • Slaughter M, Hill R J. 1991. The influence of organic matter in organogenic dolomitization. J Sediment Res, 61: 296–303

    Article  Google Scholar 

  • Su Z T, Chen H D, Xu F Y, Wei L B, Li J. 2011. Geochemistry and dolomitization mechanism of Majiagou dolomites in Ordovician, Ordos, China (in Chinese). Acta Petrol Sin, 27: 2230–2238

    Google Scholar 

  • Sun F N, Hu W X, Wang X L, Cao J, Fu B, Wu H G, Yang S C. 2021. Methanogen microfossils and methanogenesis in Permian lake deposits. Geology, 49: 13–18

    Article  Google Scholar 

  • Tang D J, Shi X Y, Jiang G Q. 2013. Mesoproterozoic biogenic thrombolites from the North China platform. Int J Earth Sci-Geol Rund, 102: 401–413

    Article  Google Scholar 

  • Teng F Z. 2017. Magnesium isotope geochemistry. Rev Mineral Geochem, 82: 219–287

    Article  Google Scholar 

  • Tucker M E. 1982. Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology, 10: 7

    Article  Google Scholar 

  • Tucker M. 2001. Principles of Sedimentology and Stratigraphy. Prentice Hall Englewood, 39: 315–316

    Google Scholar 

  • Van Lith Y, Warthmann R, Vasconcelos C, Mckenzie J A. 2003. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mgcalcite formation. Geobiology, 1: 71–79

    Article  Google Scholar 

  • Vandeginste V, Snell O, Hall M R, Steer E, Vandeginste A. 2019. Acceleration of dolomitization by zinc in saline waters. Nat Commun, 10: 1–8

    Article  Google Scholar 

  • Vasconcelos C, McKenzie J A, Bernasconi S, Grujic D, Tiens A J. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377: 220–222

    Article  Google Scholar 

  • Vasconcelos C, McKenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). SEPM J Sediment Res, 67: 378–390

    Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O G, Strauss H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59–88

    Article  Google Scholar 

  • Von der Borch C C, Jones J B. 1976. Spherular modern dolomite from the Coorong area, South Australia. Sedimentology, 23: 587–591

    Article  Google Scholar 

  • Wang J B, He Z L, Zhu D Y, Liu Q Y, Ding Q, Li S J, Zhang D W. 2020. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: Constraints on terminal Ediacaran “dolomite seas”. Sediment Geol, 406: 105722

    Article  Google Scholar 

  • Wang J Y, ** Z K. 2022. Formation Mechanism, Identification Markers, and Questions Regarding Microbial Dolomite (in Chinese). Acta Sedimentol Sin, 40: 350–359

    Google Scholar 

  • Wang K, Hu S Y, Liu W, Wang T S, Huang Q Y, Shi S Y, Ma K. 2017. The formation mechanism and distribution prediction of the hydrothermal reformed reservoir of the Upper Cambrian in Gucheng area, Tarim Basin, China (in Chinese). Nat Gas Geosci, 28: 939–951

    Google Scholar 

  • Wang L C, Hu W X, Wang X L, Chao J, Wu H G, Liao Z W, Wan Y. 2016. Variation of Sr content and 87Sr/86Sr isotope fractionation during dolomitization and their implications (in Chinese). Oil Gas Geol, 37: 464–472

    Google Scholar 

  • Wang R, Yu K F, Jones B, Jiang W, Xu S D, Fan T L, Zhang Y. 2021. Dolomitization micro-conditions constraint on dolomite stoichiometry: A case study from the Miocene Huangliu Formation, **sha Islands, South China Sea. Mar Pet Geol, 133: 105286

    Article  Google Scholar 

  • Wang W Z, Qin T, Zhou C, Huang S C, Wu Z Q, Huang F. 2017. Concentration effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals: Insights from first-principles calculations. Geochim Cosmochim Acta, 208: 185–197

    Article  Google Scholar 

  • Wang X M, Hu Z Y, Li W Q. 2018. Genesis of the Albian dolomite in Levant Basin, East Mediterranean: A case study of the Givat Ye’arim Formation and Soreq Formation near Jerusalem, Israel (in Chinese). Geol J China Univ, 24: 681–691

    Google Scholar 

  • Warren J K. 1990. Sedimentology and mineralogy of dolomitic Coorong lakes, South Australia. SEPM J Sediment Res, 60: 843–858

    Google Scholar 

  • Warren J. 2000. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci Rev, 52: 1–81

    Article  Google Scholar 

  • Warthmann R, Van Lith Y, Vasconcelos C, McKenzie J A, Karpoff A M. 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28: 1091–1094

    Article  Google Scholar 

  • Wright D T. 1999. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol, 126: 147–157

    Article  Google Scholar 

  • Wu G H, Li H W, Xu Y L, Su W, Chen Z Y, Zhang B S. 2012. The tectonothermal events, architecture and evolution of Tarim craton basement palaeo-uplifts (in Chinese). Acta Petrol Sin, 28: 2435–2452

    Google Scholar 

  • Wu L, Guan S W, Feng X Q, Ren R, Zhang C Y. 2020. Discussion on stratigraphic division of the Nanhuan and Sinian of the Tarim Basin and its surrounding regions. Acta Petrol Sin, 36: 3427–3441

    Article  Google Scholar 

  • Wu L, Guan S W, Ren R, Wang X B, Yang H J, ** J Q, Zhu G Y. 2016. The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: A case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, Western China. Pet Explor Dev, 43: 988–999

    Article  Google Scholar 

  • Wu Y S, Wang W, Jiang H X, Cui Y, Zhao R, Huang Z B, Chen Y Q. 2021. Evolution patterns of seawater carbon isotope composition during the Cambrian and their stratigraphic significance. Geol J, 56: 457–474

    Article  Google Scholar 

  • **a P, Ning M, Wen H G, Lang X G. 2021. Tracing carbonate deposition-diagenesis process using magnesium ssotopes: Implications for reconstructing deep-time seawater magnesium isotopic composition (in Chinese). Acta Sedimentol Sin, 39:1546–1564

    Google Scholar 

  • Xu B, Jian P, Zheng H F, Zou H B, Zhang L F, Liu D Y. 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Res, 136: 107–123

    Article  Google Scholar 

  • Xu B, **ao S H, Zou H B, Chen Y, Li Z X, Song B, Liu D Y, Zhou C M, Yuan X L. 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Res, 168: 247–258

    Article  Google Scholar 

  • Xu B, Zou H B, Chen Y, He J Y, Wang Y. 2013. The Sugetbrak basalts from northwestern Tarim Block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic. Precambrian Res, 236: 214–226

    Article  Google Scholar 

  • Yang H J, Chen Y Q, Pan W Q, Wang B, Yang W J, Hang S Y, Yang P F, Yi Y, Wang X X. 2020. Study on tectonic and sedimentary evolution during the Nanhua-Middle Cambrian and its significance for subsalt exploration, Tarim Basin (in Chinese). China Petrol Explor, 26: 84–98

    Google Scholar 

  • Yang H X, Hu A P, Zheng J F, Liang F, Luo X Y, Feng Y X, Shen A. 2020. Application of map** and dating techniques in the study of ancient carbonate reservoirs: A case study of Sinian Qigebrak Formation in northwestern Tarim Basin, NW China. Pet Explor Dev, 47: 1001–1013

    Article  Google Scholar 

  • Yang J, Zeng Z X, Cai X F, Li Z Y, Li T B, Meng F, He W J. 2013. Carbon and oxygen isotopes analyses for the Sinian carbonates in the Helan Mountain, North China. Chin Sci Bull, 58: 3943–3955

    Article  Google Scholar 

  • Yang L L, Zhu G Y, Li X W, Liu K Y, Yu L J, Gao Z Y. 2022a. Influence of crystal nucleus and lattice defects on dolomite growth: Geological implications for carbonate reservoirs. Chem Geol, 587: 120631

    Article  Google Scholar 

  • Yang L L, Yu L J, Liu K J, Jia J H, Zhu G Y, Liu Q. 2022b. Coupled effects of temperature and solution compositions on metasomatic dolomitization: Significance and implication for the formation mechanism of carbonate reservoir. J Hydrol, 604: 127199

    Article  Google Scholar 

  • Yang Y K, Shi K B, Liu B, Qin S, Wang J Q, Zhang X F. 2014. Tectonosedimentary evolution of the Sinian in the Northwest Tarim Basin (in Chinese). Chin J Geol, 49: 19–29

    Google Scholar 

  • You J, Hu G, Zhang X H, Shen A J, Peng H L, Tian X W, Zhao D F. 2020. Geochemical tracing of organic matter degradation in microbial carbonates during syngenetic-early diagenesis: A case study from the Member IV of Dengying Formation, Sichuan Basin (in Chinese). J Nan**g Univ-Nat Sci, 56: 308–321

    Google Scholar 

  • Zempolich W G, Wilkinson B H, Lohmann K C. 1988. Diagenesis of Late Proterozoic carbonates: The beck spring dolomite of Eastern California. SEPM J Sediment Res, 58: 656–672

    Google Scholar 

  • Zhai X F, Luo P, Gu Z D, Jiang H, Zhang B M, Wang Z C, Wang T S, Wu S T. 2020. Microbial mineralization of botryoidal laminations in the Upper Ediacaran dolostones, Western Yangtze Platform, SW China. J Asian Earth Sci, 195: 104334

    Article  Google Scholar 

  • Zhang D M, Bao Z D, Pan W Q, Hao Y, Chen Y Q, Wang J, Lai H F. 2014. Characteristics and forming mechanisms of evaporative platform dolomite reservoir in Middle Cambrian in **aoerbulake section, Tarim Basin (in Chinese). Nat Gas Geosci, 25: 498–507

    Google Scholar 

  • Zhang F F, Xu H F, Konishi H, Kemp J M, Roden E E, Shen Z Z. 2012. Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite. Geochim Cosmochim Acta, 97: 148–165

    Article  Google Scholar 

  • Zhang J, Zhang B M, Shan X Q. 2017. Major formation mechanisms and models of marine dolomite in middle and western basins of China (in Chinese). Geol Bull China, 36: 664–675

    Google Scholar 

  • Zhao Z J, Zhang Y B, Pan M, Wu X N, Pan W Q. 2010. Cambrian sequence stratigraphic framework of in Tarim Basin (in Chinese). Geol Rev, 56: 609–620

    Google Scholar 

  • Zheng J F, Liu Y, Zhu Y J, Liang F. 2021b. Geochemical features and its geological significances of the Upper Sinian Qigeblak Formation in Wushi area, Tarim Basin (in Chinese). Acta Petrol Sin, 23: 983–998

    Google Scholar 

  • Zheng J, Pan W, Shen A, Yuan W, Huang L, Ni X, Zhu Y. 2020. Reservoir geological modeling and significance of Cambrian ** outcrop area, Tarim Basin, NW China. Pet Explor Dev, 47: 536–547

    Article  Google Scholar 

  • Zheng J F, Shen A J, Yang H X, Zhu Y J, Liang F. 2021a. Geochemistry and geochronology characteristics and their geological significance of microbial dolomite in Upper Sinian, NW Tarim Basin. Acta Petrol Sin, 37: 2189–2202

    Article  Google Scholar 

  • Zheng J F, Yuan W F, Huang L L, Pan W Q, Qiao Z F, Yang G. 2019. Sedimentary facies model and its exploration significance of Lower Cambrian **aoerblake Formation in **aoerblake area, Tarim Basin (in Chinese). J Palaeogeogr, 21: 589–602

    Google Scholar 

  • Zheng R C, Hu Z G, Feng Q P, Zheng C, Luo P, Chen S C. 2007. Genesis of dolomite reservoir of the Changxing Formation of Upper Permian, Northeast Sichuan Basin (in Chinese). J Mineral Petrol, 27: 78–84

    Google Scholar 

  • Zhu G Y, Li X, Li T T, Zhou L, Wu Y X, Shen B, Ning M. 2022. Magnesium isotope trace dolomitization fluid migration path: A case study of the Carboniferous Huanglong Formation in the Sichuan basin (in Chinese). Acta Geol Sin, doi: https://doi.org/10.19762/j.cnki.dizhixuebao.2022057

  • Zhu G Y, Zhang Z Y, Zhou X X, Li T T, Han J F, Sun C H. 2019a. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China. Earth-Sci Rev, 198: 102930

    Article  Google Scholar 

  • Zhu G Y, Milkov A V, Zhang Z Y, Sun C H, Zhou X X, Chen F R, Han J F, Zhu Y F. 2019b. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China. AAPG Bull, 103: 1703–1743

    Article  Google Scholar 

  • Zhu G Y, Yan H H, Chen W Y, Yan L, Zhang K J, Li T T, Santosh M. 2020. Discovery of Cryogenian interglacial source rocks in the northern Tarim, NW China: Implications for Neoproterozoic paleoclimatic reconstructions and hydrocarbon exploration. Gondwana Res, 80: 370–384

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research and Technology Development Project “Research on Marine Carbonate Reservoir Forming Theory and Exploration Technology” (Grant No. 2021DJ05) of CNPC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyou Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Li, X., Li, T. et al. Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin. Sci. China Earth Sci. 66, 334–357 (2023). https://doi.org/10.1007/s11430-021-1010-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-1010-6

Keywords

Navigation