Log in

Redox processes in subduction zones: Progress and prospect

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Oxygen fugacity (fO2) is an intensive variable that describes the redox state of a system. By controlling the valence state of multivalent elements, fO2 affects the stability of iron-bearing minerals, dominants the species of volatile elements (e.g., carbon and sulfur), and controls the partitioning behaviors of multivalent elements (e.g., iron, vanadium, cerium, europium). Thus, fO2 plays a key role in understanding the generation and differentiation of arc magmas, the formation of magmatic-hydrothermal deposits, and the nature of magmatic volatiles. Subduction zones are an important site for arc magmatism and fluid action, and the study of redox processes is indispensable in subduction zone geochemistry. In this paper, we first introduce the concept, expression, and estimation methods of fO2. Then we retrospect the history and progress about the oxidation state of the metasomatized mantle wedge, summarize the redox property of slab-derived fluids, and review the latest progress on redox evolution of arc magmas during magma generation and differentiation. The main conclusions include: (1) despite its wide variation range, fO2 of the mantle wedge is generally higher than that of the oceanic mantle; (2) the redox property of the subducting slab-derived fluids is still controversial and the mechanism for the oxidization of the mantle wedge remains unclear; (3) how the fO2 varies during the generation and differentiation of the arc magmas is debated. We propose that the crux in deciphering the oxidization mechanism of the mantle wedge is to determine the mobility of iron, carbon and sulfur in subducting slab-derived fluids (especially solute-rich fluid or supercritical fluid); the key in understanding the redox evolution during arc magma generation and differentiation is to determine the partition coefficients of Fe3+ and Fe2+ between ferromagnesian minerals and silicate melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt J C, Garrido C J, Shanks W C, Turchyn A, Padrón-Navarta J A, López Sánchez-Vizcaíno V, Gómez Pugnaire M T, Marchesi C. 2012. Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain. Earth Planet Sci Lett, 327–328: 50–60

    Google Scholar 

  • Alt J C, Schwarzenbach E M, Früh-Green G L, Shanks Iii W C, Bernasconi S M, Garrido C J, Crispini L, Gaggero L, Padrón-Navarta J A, Marchesi C. 2013. The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism. Lithos, 178: 40–54

    Google Scholar 

  • Arató R, Audétat A. 2017. FeTiMM—A new oxybarometer for mafic to felsic magmas. Geochem Perspect Lett, 5: 19–23

    Google Scholar 

  • Bai Q, Kohlstedt D L. 1992. High-temperature creep of olivine single crystals III. Mechanical results for unbuffered samples and creep mechanisms. Philos Mag A, 66: 1149–1181

    Google Scholar 

  • Bai Z, Zhong H, Zhu W. 2019. Redox state of mantle-derived magma and constraints on the genesis of magmatic deposits. Acta Petrol Sin, 35: 204–214

    Google Scholar 

  • Ballhaus C. 1993. Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol, 114: 331–348

    Google Scholar 

  • Ballhaus C, Berry R F, Green D H. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contrib Mineral Petrol, 107: 27–40

    Google Scholar 

  • Bénard A, Klimm K, Woodland A B, Arculus R J, Wilke M, Botcharnikov R E, Shimizu N, Nebel O, Rivard C, Ionov D A. 2018. Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas. Nat Commun, 9: 3500

    Google Scholar 

  • Berry A J, O’Neill H S C. 2004. A XANES determination of the oxidation state of chromium in silicate glasses. Am Miner, 89: 790–798

    Google Scholar 

  • Berry A J, O’Neill H S C, Jayasuriya K D, Campbell S J, Foran G J. 2003. XANES calibrations for the oxidation state of iron in a silicate glass. Am Miner, 88: 967–977

    Google Scholar 

  • Bézos A, Humler E. 2005. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta, 69: 711–725

    Google Scholar 

  • Biggar G M. 1974. Phase equilibrium studies of the chilled margins of some layered intrusions. Contrib Mineral Petrol, 46: 159–167

    Google Scholar 

  • Binder B, Wenzel T, Keppler H. 2018. The partitioning of sulfur between multicomponent aqueous fluids and felsic melts. Contrib Mineral Petrol, 173: 18

    Google Scholar 

  • Brandon A D, Draper D S. 1996. Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA. Geochim Cosmochim Acta, 60: 1739–1749

    Google Scholar 

  • Bretscher A, Hermann J, Pettke T. 2018. The influence of oceanic oxidation on serpentinite dehydration during subduction. Earth Planet Sci Lett, 499: 173–184

    Google Scholar 

  • Brounce M N, Kelley K A, Cottrell E. 2014. Variations in Fe3+/XFe of Mariana arc basalts and mantle wedge fO2. J Petrol, 55: 2513–2536

    Google Scholar 

  • Brounce M, Kelley K A, Cottrell E, Reagan M K. 2015. Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology, 43: 775–778

    Google Scholar 

  • Brounce M, Cottrell E, Kelley K A. 2019. The redox budget of the Mariana subduction zone. Earth Planet Sci Lett, 528: 115859

    Google Scholar 

  • Bucholz C E, Kelemen P B. 2019. Oxygen fugacity at the base of the Talkeetna arc, Alaska. Contrib Mineral Petrol, 174: 79

    Google Scholar 

  • Burgisser A, Oppenheimer C, Alletti M, Kyle P R, Scaillet B, Carroll M R. 2012. Backward tracking of gas chemistry measurements at Erebus volcano. Geochem Geophys Geosyst, 13: 2012GC004243

    Google Scholar 

  • Burnham A D, Berry A J, Halse H R, Schofield P F, Cibin G, Mosselmans J F W. 2015. The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature. Chem Geol, 411: 248–259

    Google Scholar 

  • Canil D. 1997. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature, 389: 842–845

    Google Scholar 

  • Canil D. 1999. Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochim Cosmochim Acta, 63: 557–572

    Google Scholar 

  • Canil D. 2002. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet Sci Lett, 195: 75–90

    Google Scholar 

  • Canil D, Fedortchouk Y. 2000. Clinopyroxene-liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere. J Geophys Res, 105: 26003–26016

    Google Scholar 

  • Canil D, Johnston S T, Mihalynuk M. 2006. Mantle redox in Cordilleran ophiolites as a record of oxygen fugacity during partial melting and the lifetime of mantle lithosphere. Earth Planet Sci Lett, 248: 106–117

    Google Scholar 

  • Carmichael I S E. 1991. The redox states of basic and silicic magmas: A reflection of their source regions? Contrib Mineral Petrol, 106: 129–141

    Google Scholar 

  • Chen Y X, Lu W, He Y, Schertl H P, Zheng Y F, **ong J W, Zhou K. 2019. Tracking Fe mobility and Fe speciation in subduction zone fluids at the slab-mantle interface in a subduction channel: A tale of whites-chist from the Western Alps. Geochim Cosmochim Acta, 267: 1–16

    Google Scholar 

  • Chiaradia M. 2013. Copper enrichment in arc magmas controlled by overriding plate thickness. Nat Geosci, 7: 43–46

    Google Scholar 

  • Chin E J, Shimizu K, Bybee G M, Erdman M E. 2018. On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective. Earth Planet Sci Lett, 482: 277–287

    Google Scholar 

  • Chou I M. 1987. Oxygen buffer and hydrogen sensor techniques at elevated pressures and temperatures. In: Ulmer G C, Barnes H L, eds. Hydro-thermal Experimental Techniques. Hoboken, NJ: John Wiley. 61–99

    Google Scholar 

  • Christie D M, Carmichael I S E, Langmuir C H. 1986. Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett, 79: 397–411

    Google Scholar 

  • Cottrell E, Kelley K A, Lanzirotti A, Fischer R A. 2009. High-precision determination of iron oxidation state in silicate glasses using XANES. Chem Geol, 268: 167–179

    Google Scholar 

  • Cottrell E, Kelley K A. 2011. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett, 305: 270–282

    Google Scholar 

  • Cottrell E, Lanzirotti A, Mysen B, Birner S, Kelley K A, Botcharnikov R, Davis F A, Newville M. 2018. A Mössbauer-based XANES calibration for hydrous basalt glasses reveals radiation-induced oxidation of Fe. Am Miner, 103: 489–501

    Google Scholar 

  • Crabtree S M, Lange R A. 2012. An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: A comparison of pre- and post-eruptive Fe2+ concentrations. Contrib Mineral Petrol, 163: 209–224

    Google Scholar 

  • Davis F A, Cottrell E, Birner S K, Warren J M, Lopez O G. 2017. Revisiting the electron microprobe method of spinel-olivine-orthopyroxene oxybarometry applied to spinel peridotitesk. Am Miner, 102: 421–435

    Google Scholar 

  • de Hoog J C M, Hattori K H, Hoblitt R P. 2003. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines. Contrib Mineral Petrol, 146: 750–761

    Google Scholar 

  • Debret B, Andreani M, Muñoz M, Bolfan-Casanova N, Carlut J, Nicollet C, Schwartz S, Trcera N. 2014a. Evolution of Fe redox state in serpentine during subduction. Earth Planet Sci Lett, 400: 206–218

    Google Scholar 

  • Debret B, Koga K T, Nicollet C, Andreani M, Schwartz S. 2014b. F, Cl and S input via serpentinite in subduction zones: Implications for the nature of the fluid released at depth. Terra Nova, 26: 96–101

    Google Scholar 

  • Debret B, Bolfan-Casanova N, Padrón-Navarta J A, Martin-Hernandez F, Andreani M, Garrido C J, López Sánchez-Vizcaíno V, Gómez-Pugnaire M T, Muñoz M, Trcera N. 2015. Redox state of iron during high-pressure serpentinite dehydration. Contrib Mineral Petrol, 169: 36

    Google Scholar 

  • Debret B, Millet M A, Pons M L, Bouilhol P, Inglis E, Williams H. 2016. Isotopic evidence for iron mobility during subduction. Geology, 44: 215–218

    Google Scholar 

  • Debret B, Sverjensky D A. 2017. Highly oxidising fluids generated during serpentinite breakdown in subduction zones. Sci Rep, 7: 10351

    Google Scholar 

  • Donohue C L, Essene E J. 2000. An oxygen barometer with the assemblage garnet-epidote. Earth Planet Sci Lett, 181: 459–472

    Google Scholar 

  • Drake M J. 1975. The oxidation state ofeuropium as an indicator of oxygen fugacity. Geochim Cosmochim Acta, 39: 55–64

    Google Scholar 

  • Drake M J, Weill D F. 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: An experimental study. Geochim Cosmochim Acta, 39: 689–712

    Google Scholar 

  • Dygert N, Draper D S, Rapp J F, Lapen T J, Fagan A L, Neal C R. 2020. Experimental determinations of trace element partitioning between plagioclase, pigeonite, olivine, and lunar basaltic melts and an fO2 dependent model for plagioclase-melt Eu partitioning. Geochim Cosmochim Acta, 279: 258–280

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. J Geophys Res, 102: 14991–15019

    Google Scholar 

  • Evans K A. 2006. Redox decoupling and redox budgets: Conceptual tools for the study of earth systems. Geology, 34: 489–492

    Google Scholar 

  • Evans K A. 2012. The redox budget of subduction zones. Earth-Sci Rev, 113: 11–32

    Google Scholar 

  • Evans K A, Reddy S M, Tomkins A G, Crossley R J, Frost B R. 2017. Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere. Lithos, 278–281: 26–42

    Google Scholar 

  • Feng L, Li Y. 2019. Comparative partitioning of Re and Mo between sulfide phases and silicate melt and implications for the behavior of Re during magmatic processes. Earth Planet Sci Lett, 517: 14–25

    Google Scholar 

  • Frost B R. 1991. Introduction to oxygen fugacity and its petrologic importance. Rev Mineral, 25: 1–9

    Google Scholar 

  • Frost D J, Wood B J. 1995. Experimental measurements of the graphite C-O equilibrium and CO2 fugacities at high temperature and pressure. Contrib Mineral Petrol, 121: 303–308

    Google Scholar 

  • Frost D J, McCammon C A. 2008. The redox state of Earth’s mantle. Annu Rev Earth Planet Sci, 36: 389–420

    Google Scholar 

  • Gaetani G A. 2016. The behavior of Fe3+/LFe during partial melting of spinel lherzolite. Geochim Cosmochim Acta, 185: 64–77

    Google Scholar 

  • Galvez M E, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J. 2013a. Graphite formation by carbonate reduction during subduction. Nat Geosci, 6: 473–477

    Google Scholar 

  • Galvez M E, Martinez I, Beyssac O, Benzerara K, Agrinier P, Assayag N. 2013b. Metasomatism and graphite formation at a lithological interface in Malaspina (Alpine Corsica, France). Contrib Mineral Petrol, 166: 1687–1708

    Google Scholar 

  • Gerrits A R, Inglis E C, Dragovic B, Starr P G, Baxter E F, Burton K W. 2019. Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet. Nat Geosci, 12: 1029–1033

    Google Scholar 

  • Ghiorso M S, Evans B W. 2008. Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am J Sci, 308: 957–1039

    Google Scholar 

  • Grocke S B, Cottrell E, de Silva S, Kelley K A. 2016. The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth Planet Sci Lett, 440: 92–104

    Google Scholar 

  • Huang R, Lin C T, Sun W, Ding X, Zhan W, Zhu J. 2017. The production of iron oxide during peridotite serpentinization: Influence of pyroxene. Geosci Front, 8: 1311–1321

    Google Scholar 

  • Iacovino K, Guild M R, Till C B. 2020. Aqueous fluids are effective oxidizing agents of the mantle in subduction zones. Contrib Mineral Petrol, 175: 36

    Google Scholar 

  • Irving A J. 1978. A review of experimental studies of crystal/liquid trace element partitioning. Geochim Cosmochim Acta, 42: 743–770

    Google Scholar 

  • Ishimaru S, Arai S, Shukuno H. 2009. Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka. Earth Planet Sci Lett, 284: 352–360

    Google Scholar 

  • Jugo P J. 2005. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300°C and 1.0 GPa. J Petrol, 46: 783–798

    Google Scholar 

  • Jugo P J. 2009. Sulfur content at sulfide saturation in oxidized magmas. Geology, 37: 415–418

    Google Scholar 

  • Karner J M. 2006. Application ofa new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars. Am Miner, 91: 270–277

    Google Scholar 

  • Kelley K A, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325: 605–607

    Google Scholar 

  • Kelley K A, Cottrell E. 2012. The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett, 329–330: 109–121

    Google Scholar 

  • Kilinc A, Carmichael I S E, Rivers M L, Sack R O. 1983. The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol, 83: 136–140

    Google Scholar 

  • Kohlstedt D L, Zimmerman M E. 1996. Rheology of partially molten mantle rocks. Annu Rev Earth Planet Sci, 24: 41–62

    Google Scholar 

  • Kolzenburg S, Di Genova D, Giordano D, Hess K U, Dingwell D B. 2018. The effect of oxygen fugacity on the rheological evolution of crystallizing basaltic melts. Earth Planet Sci Lett, 487: 21–32

    Google Scholar 

  • Konecke B A, Fiege A, Simon A C, Parat F, Stechern A. 2017. Co-variability of S6+, S4+, and S2 in apatite as a function of oxidation state: Implications for a new oxybarometer. Am Miner, 102: 548–557

    Google Scholar 

  • Konecke B A, Fiege A, Simon A C, Linsler S, Holtz F. 2019. An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochim Cosmochim Acta, 265: 242–258

    Google Scholar 

  • Kress V C, Carmichael I S E. 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol, 108: 82–92

    Google Scholar 

  • Kushiro I. 1990. Partial melting of mantle wedge and evolution of island arc crust. J Geophys Res, 95: 15929–15939

    Google Scholar 

  • Laubier M, Grove T L, Langmuir C H. 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett, 392: 265–278

    Google Scholar 

  • Lee C T A, Brandon A D, Norman M. 2003. Vanadium in peridotites as a proxy for paleo-fO2 during partial melting. Geochim Cosmochim Acta, 67: 3045–3064

    Google Scholar 

  • Lee C T A, Leeman W P, Canil D, Li Z X A. 2005. Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions. J Petrol, 46: 2313–2336

    Google Scholar 

  • Lee C T A, Luffi P, Plank T, Dalton H, Leeman W P. 2009. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett, 279: 20–33

    Google Scholar 

  • Lee C T A, Luffi P, Le Roux V, Dasgupta R, Albaréde F, Leeman W P. 2010. The redox state of arc mantle using Zn/Fe systematics. Nature, 468: 681–685

    Google Scholar 

  • Lee C T A, Luffi P, Chin E J, Bouchet R, Dasgupta R, Morton D M, Le Roux V, Yin Q, ** D. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, 336: 64–68

    Google Scholar 

  • Lee C T A, Tang M. 2020. How to make porphyry copper deposits. Earth Planet Sci Lett, 529: 115868

    Google Scholar 

  • Li J L, Gao J, John T, Klemd R, Su W. 2013. Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits: Constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China). Geochim Cosmochim Acta, 120: 326–362

    Google Scholar 

  • Li J L, Gao J, Klemd R, John T, Wang X S. 2016. Redox processes in subducting oceanic crust recorded by sulfide-bearing high-pressure rocks and veins (SW Tianshan, China). Contrib Mineral Petrol, 171: 72

    Google Scholar 

  • Li J L, Schwarzenbach E M, John T, Ague J J, Huang F, Gao J, Klemd R, Whitehouse M J, Wang X S. 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nat Commun, 11: 514

    Google Scholar 

  • Liu H, Liao R, Zhang L, Li C, Sun W. 2019. Plate subduction, oxygen fugacity, and mineralization. J Ocean Limnol, 38: 64–74

    Google Scholar 

  • Liu Y, Santosh M, Yuan T, Li H, Li T. 2016. Reduction ofburied oxidized oceanic crust during subduction. Gondwana Res, 32: 11–23

    Google Scholar 

  • Luth R W, Canil D. 1993. Ferric iron in mantle-derived pyroxenes and a new oxybarometer for the mantle. Contrib Mineral Petrol, 113: 236–248

    Google Scholar 

  • Malaspina N, Poli S, Fumagalli P. 2009. The oxidation state of metasomatized mantle wedge: Insights from C-O-H-bearing garnet peridotite. J Petrol, 50: 1533–1552

    Google Scholar 

  • Malaspina N, Langenhorst F, Tumiati S, Campione M, Frezzotti M L, Poli S. 2017. The redox budget of crust-derived fluid phases at the slabmantle interface. Geochim Cosmochim Acta, 209: 70–84

    Google Scholar 

  • Mallmann G, O’Neill H S C. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol, 50: 1765–1794

    Google Scholar 

  • Masotta M, Keppler H, Chaudhari A. 2016. Fluid-melt partitioning of sulfur in differentiated arc magmas and the sulfur yield of explosive volcanic eruptions. Geochim Cosmochim Acta, 176: 26–43

    Google Scholar 

  • Mathez E A. 1984. Influence of degassing on oxidation states of basaltic magmas. Nature, 310: 371–375

    Google Scholar 

  • Matjuschkin V, Blundy J D, Brooker R A. 2016. The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. Contrib Mineral Petrol, 171: 66

    Google Scholar 

  • Mattioli G S, Wood B J. 1986. Upper mantle oxygen fugacity recorded by spinel lherzolites. Nature, 322: 626–628

    Google Scholar 

  • Mattioli G S, Wood B J. 1988. Magnetite activities across the MgAl2O4-Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity. Contrib Mineral Petrol, 98: 148–162

    Google Scholar 

  • McCammon C. 2005. The paradox ofmantle redox. Science, 308: 807–808

    Google Scholar 

  • McKenzie N R, Horton B K, Loomis S E, Stockli D F, Planavsky N J, Lee C T A. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352: 444–447

    Google Scholar 

  • Merkulova M V, Muñoz M, Brunet F, Vidal O, Hattori K, Vantelon D, Trcera N, Huthwelker T. 2017. Experimental insight into redox transfer by iron- and sulfur-bearing serpentinite dehydration in subduction zones. Earth Planet Sci Lett, 479: 133–143

    Google Scholar 

  • Métrich N, Berry A J, O’Neill H S C, Susini J. 2009. The oxidation state of sulfur in synthetic and natural glasses determined by X-ray absorption spectroscopy. Geochim Cosmochim Acta, 73: 2382–2399

    Google Scholar 

  • Moussallam Y, Oppenheimer C, Scaillet B, Gaillard F, Kyle P, Peters N, Hartley M, Berlo K, Donovan A. 2014. Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing. Earth Planet Sci Lett, 393: 200–209

    Google Scholar 

  • Nash W M, Smythe D J, Wood B J. 2019. Compositional and temperature effects on sulfur speciation and solubility in silicate melts. Earth Planet Sci Lett, 507: 187–198

    Google Scholar 

  • Nell J, Wood B J. 1991. High temperature electrical measurements and thermodynamic properties of Fe3O4-FeCr2O4-MgCr2O4-FeAl2O4 spinels. Amer Mineral, 76: 405–426

    Google Scholar 

  • Ni H W. 2013. Advances and application in physicochemical properties of silicate melts. Chin Sci Bull, 58: 865–890

    Google Scholar 

  • Nicklas R W, Puchtel I S, Ash R D. 2018. Redox state of the Archean mantle: Evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochim Cosmochim Acta, 222: 447–466

    Google Scholar 

  • Nicklas R W, Puchtel I S, Ash R D, Piccoli P M, Hanski E, Nisbet E G, Waterton P, Pearson D G, Anbar A D. 2019. Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochim Cosmochim Acta, 250: 49–75

    Google Scholar 

  • O’Neill H S C. 2006. An experimental determination of the effect of pressure on the Fe3+/Fe ratio of an anhydrous silicate melt to 3.0 GPa. Am Miner, 91: 404–412

    Google Scholar 

  • O’Neill H S C, Wall V J. 1987. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol, 28: 1169–1191

    Google Scholar 

  • O’Neill H S C, Pownceby M I. 1993. Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-“FeO”, Co“CoO, Ni“NiO and Cu“Cu2O oxygen buffers, and new data for the W“WO2 buffer. Contrib Mineral Petrol, 114: 296–314

    Google Scholar 

  • Oppenheimer C, Moretti R, Kyle P R, Eschenbacher A, Lowenstern J B, Hervig R L, Dunbar N W. 2011. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet Sci Lett, 306: 261–271

    Google Scholar 

  • Papike J J, Simon S B, Burger P V, Bell A S, Shearer C K, Karner J M. 2016. Chromium, vanadium, and titanium valence systematics in Solar System pyroxene as a recorder of oxygen fugacity, planetary provenance, and processes. Am Miner, 101: 907–918

    Google Scholar 

  • Parkinson I J, Arculus R J. 1999. The redox state of subduction zones: Insights from arc-peridotites. Chem Geol, 160: 409–423

    Google Scholar 

  • Peretti A, Dubessy J, Mullis J, Frost B R, Trommsdorff V. 1992. Highly reducing conditions during Alpine metamorphism of the Malenco peridotite (Sondrio, northern Italy) indicated by mineral paragenesis and H2 in fluid inclusions. Contrib Mineral Petrol, 112: 329–340

    Google Scholar 

  • Piccoli F, Hermann J, Pettke T, Connolly J A D, Kempf E D, Vieira Duarte J F. 2019. Subducting serpentinites release reduced, not oxidized, aqueous fluids. Sci Rep, 9: 19573

    Google Scholar 

  • Plank T, Kelley K A, Zimmer M M, Hauri E H, Wallace P J. 2013. Why do mafic arc magmas contain ∼4 wt% water on average? Earth Planet Sci Lett, 364: 168–179

    Google Scholar 

  • Pons M L, Debret B, Bouilhol P, Delacour A, Williams H. 2016. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nat Commun, 7: 13794

    Google Scholar 

  • Pownceby M I, O’Neill H S C. 1994. Thermodynamic data from redox reactions at high temperatures. IV. Calibration of the Re-ReO2 oxygen buffer from EMF and NiO+Ni−Pd redox sensor measurements. Contrib Mineral Petrol, 118: 130–137

    Google Scholar 

  • Putirka K. 2016. Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature. Am Miner, 101: 819–840

    Google Scholar 

  • Rielli A, Tomkins A G, Nebel O, Brugger J, Etschmann B, Zhong R, Yaxley G M, Paterson D. 2017. Evidence of sub-arc mantle oxidation by sulphur and carbon. Geochem Perspect Lett, 3: 124–132

    Google Scholar 

  • Rudra A, Hirschmann M M. 2019. Experimental determination of ferric iron partitioning between pyroxene and melt during partial melting of the Earth’s upper mantle. AGU Fall Meeting, Abstract

  • Shen P, Hattori K, Pan H, Jackson S, Seitmuratova E. 2015. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the Central Asian orogenic belt. Econ Geol, 110: 1861–1878

    Google Scholar 

  • Sack R O, Carmichael I S E, Rivers M, Ghiorso M S. 1980. Ferric-ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol, 75: 369–376

    Google Scholar 

  • Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett, 59: 101–118

    Google Scholar 

  • Shishkina T A, Portnyagin M V, Botcharnikov R E, Almeev R R, Simonyan A V, Garbe-Schönberg D, Schuth S, Oeser M, Holtz F. 2018. Experimental calibration and implications of olivine-melt vanadium oxybarometry for hydrous basaltic arc magmas. Am Miner, 103: 369–383

    Google Scholar 

  • Shorttle O, Moussallam Y, Hartley M E, Maclennan J, Edmonds M, Murton B J. 2015. Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust’s role in the solid Earth oxygen cycle. Earth Planet Sci Lett, 427: 272–285

    Google Scholar 

  • Song S, Su L, Niu Y, Lai Y, Zhang L. 2009. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim Cosmochim Acta, 73: 1737–1754

    Google Scholar 

  • Sorbadere F, Laurenz V, Frost D J, Wenz M, Rosenthal A, McCammon C, Rivard C. 2018. The behaviour of ferric iron during partial melting of peridotite. Geochim Cosmochim Acta, 239: 235–254

    Google Scholar 

  • Stagno V, Ojwang D O, McCammon C A, Frost D J. 2013. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493: 84–88

    Google Scholar 

  • Stolper D A, Bucholz C E. 2019. Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proc Natl Acad Sci USA, 116: 8746–8755

    Google Scholar 

  • Straub S M, Layne G D. 2003. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones. Geochim Cosmochim Acta, 67: 4179–4203

    Google Scholar 

  • Sun W, Wang J, Zhang L, Zhang C, Li H, Ling M, Ding X, Li C, Liang H. 2016. The formation of porphyry copper deposits. Acta Geochim, 36: 9–15

    Google Scholar 

  • Sutton S R, Karner J, Papike J, Delaney J S, Shearer C, Newville M, Eng P, Rivers M, Dyar M D. 2005. Vanadium K edge XANES ofsynthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochim Cosmochim Acta, 69: 2333–2348

    Google Scholar 

  • Tang M, Erdman M, Eldridge G, Lee C T A. 2018. The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci Adv, 4: eaar4444

    Google Scholar 

  • Tang M, Lee C T A, Chen K, Erdman M, Costin G, Jiang H. 2019a. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nat Commun, 10: 235

    Google Scholar 

  • Tang M, Lee C T A, Costin G, Höfer H E. 2019b. Recycling reduced iron at the base of magmatic orogens. Earth Planet Sci Lett, 528: 115827

    Google Scholar 

  • Tao R, Zhang L, Tian M, Zhu J, Liu X, Liu J, Höfer H E, Stagno V, Fei Y. 2018. Formation ofabiotic hydrocarbon from reduction ofcarbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochim Cosmochim Acta, 239: 390–408

    Google Scholar 

  • Tao R, Zhang L, Zhang L. 2019. Redox evolution of western Tianshan subduction zone and its effect on deep carbon cycle. Geosci Front, 11: 915–924

    Google Scholar 

  • Tollan P, Hermann J. 2019. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene. Nat Geosci, 12: 667–671

    Google Scholar 

  • Trail D, Bruce Watson E, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim Cosmochim Acta, 97: 70–87

    Google Scholar 

  • Tumiati S, Godard G, Martin S, Malaspina N, Poli S. 2015. Ultra-oxidized rocks in subduction mélanges? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment. Lithos, 226: 116–130

    Google Scholar 

  • Wallace P J. 2005. Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res, 140: 217–240

    Google Scholar 

  • Wallace P J, Edmonds M. 2011. The sulfur budget in magmas: Evidence from melt inclusions, submarine glasses, and volcanic gas emissions. Rev Mineral Geochem, 73: 215–246

    Google Scholar 

  • Wang J, **ong X, Takahashi E, Zhang L, Li L, Liu X. 2019. Oxidation state of arc mantle revealed by partitioning of V, Sc, and Ti between mantle minerals and basaltic melts. J Geophys Res-Solid Earth, 124: 4617–4638

    Google Scholar 

  • Wang Z, Becker H, Liu Y, Hoffmann E, Chen C, Zou Z, Li Y. 2018. Constant Cu/Ag in upper mantle and oceanic crust: Implications for the role ofcumulates during the formation ofcontinental crust. Earth Planet Sci Lett, 493: 25–35

    Google Scholar 

  • Waters L E, Lange R A. 2016. No effect of H2O degassing on the oxidation state of magmatic liquids. Earth Planet Sci Lett, 447: 48–59

    Google Scholar 

  • Wood B J. 1990. An experimental test of the spinel peridotite oxygen barometer. J Geophys Res, 95: 15845–15,851

    Google Scholar 

  • Wood B J, Virgo D. 1989. Upper mantle oxidation state: Ferric iron contents of Iherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim Cosmochim Acta, 53: 1277–1291

    Google Scholar 

  • Wood B J, Bryndzia L T, Johnson K E. 1990. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science, 248: 337–345

    Google Scholar 

  • **ong X L. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 34: 945–948

    Google Scholar 

  • Yang X. 2016. Effect ofoxygen fugacity on OH dissolution in olivine under peridotite-saturated conditions: An experimental study at 1.5–7 GPa and 1100–1300°C. Geochim Cosmochim Acta, 173: 319–336

    Google Scholar 

  • Zhang C, Sun W, Wang J, Zhang L, Sun S, Wu K. 2017. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochim Cosmochim Acta, 206: 343–363

    Google Scholar 

  • Zhang C, Almeev R R, Hughes E C, Borisov A A, Wolff E P, Höfer H E, Botcharnikov R E, Koepke J. 2018. Electron microprobe technique for the determination of iron oxidation state in silicate glasses. Am Miner, 103: 1445–1454

    Google Scholar 

  • Zhang H L, Hirschmann M M, Cottrell E, Withers A C. 2017. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochim Cosmochim Acta, 204: 83–103

    Google Scholar 

  • Zhang H L, Cottrell E, Solheid P A, Kelley K A, Hirschmann M M. 2018. Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chem Geol, 479: 166–175

    Google Scholar 

  • Zheng Y F. 2019. Subduction zone geochemistry. Geosci Front, 10: 1223–1254

    Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Google Scholar 

  • Zheng Y F, Zhao Z F. 2017. Introduction to the structures and processes of subduction zones. J Asian Earth Sci, 145: 1–15

    Google Scholar 

  • Zheng Y F, Xu Z, Chen L, Dai L Q, Zhao Z F. 2020. Chemical geodynamics of mafic magmatism above subduction zones. J Asian Earth Sci, 194: 104185

    Google Scholar 

  • Zou X, Qin K, Han X, Li G, Evans N J, Li Z, Yang W. 2019. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth Planet Sci Lett, 506: 87–96

    Google Scholar 

Download references

Acknowledgements

We thank Jilei Li and Renbiao Tao for their constructive comments, which have greatly improved the manuscript. This work was financially supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702704), the National Natural Science Foundation of China (Grant No. 41921003) and the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-DQC012). This is contribution No. IS-2904 from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **tuan Wang or **aolin **ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., **ong, X., Chen, Y. et al. Redox processes in subduction zones: Progress and prospect. Sci. China Earth Sci. 63, 1952–1968 (2020). https://doi.org/10.1007/s11430-019-9662-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9662-2

Keywords

Navigation