Log in

Deep carbon cycle in subduction zones

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The carbon cycle between the deep Earth and the atmosphere (i.e., the deep carbon cycle) can significantly affect the global climate on both long and short time scales. Although carbon in the deep Earth can be released to the atmosphere in many ways, plate subduction is the only pathway for the return of carbon from the surface to the deep Earth. Owing to diversity in the forms of carbon and the special physicochemical property of carbonates, the behavior of carbon and carbonates in subduction zones significantly affects the products of subduction processes, the oxygen fugacity in subduction zones, and the activation and migration of elements during the crust-mantle interaction. Therefore, the carbon cycle in subduction zones plays an important role in maintaining a habitable climate by regulating the atmospheric CO2 concentration, which significantly affects the global climate, and in causing fundamental changes in the physical and chemical properties of the mantle that result in a heterogeneous mantle. In this study, we review and discuss previous studies and scientific problems regarding the carbon cycle in subduction zones from four aspects: observation and tracing of the carbon cycle, migration and variation of carbon during subduction, carbon flux, and the effect of the carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat Geosci, 7: 355–360

    Article  Google Scholar 

  • Aiuppa A, Fischer T P, Plank T, Robidoux P, Di Napoli R. 2017. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth-Sci Rev, 168: 24–47

    Article  Google Scholar 

  • Alt J C, Garrido C J, Shanks III W C, Turchyn A, Padrón-Navarta J A, López Sánchez-Vizcaíno V, Gómez Pugnaire M T, Marchesi C. 2012. Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain. Earth Planet Sci Lett, 327–328: 50–60

    Article  Google Scholar 

  • Alt J C, Teagle D A H. 1999. The uptake of carbon during alteration of ocean crust. Geochim Cosmochim Acta, 63: 1527–1535

    Article  Google Scholar 

  • Ammannati E, Jacob D E, Avanzinelli R, Foley S F, Conticelli S. 2016. Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle. Earth Planet Sci Lett, 444: 64–74

    Article  Google Scholar 

  • Athy L F. 1930. Density, porosity, and compaction of sedimentary rocks. AAPG Bull, 14: 1–24

    Google Scholar 

  • Baker M B, Stolper E M. 1994. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta, 58: 2811–2827

    Article  Google Scholar 

  • Ballhaus C, Berry R F, Green D H. 1990. Oxygen fugacity controls in the Earth’s upper mantle. Nature, 348: 437–440

    Article  Google Scholar 

  • Becker H, Altherr R. 1992. Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature, 358: 745–748

    Article  Google Scholar 

  • Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat Geosci, 4: 641–646

    Article  Google Scholar 

  • Bell K, Simonetti A. 2010. Source of parental melts to carbonatites-critical isotopic constraints. Miner Petrol, 98: 77–89

    Article  Google Scholar 

  • Blättler C L, Higgins J A. 2017. Testing Urey’s carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth Planet Sci Lett, 479: 241–251

    Article  Google Scholar 

  • Blundy J, Dalton J. 2000. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol, 139: 356–371

    Article  Google Scholar 

  • Brenker F E, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F. 2007. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett, 260: 1–9

    Article  Google Scholar 

  • Brey G P, Bulatov V K, Girnis A V, Lahaye Y. 2008. Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol, 49: 797–821

    Article  Google Scholar 

  • Brune S, Williams S E, Müller R D. 2017. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci, 10: 941–946

    Article  Google Scholar 

  • Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 160: 489–510

    Article  Google Scholar 

  • Carlson R W, Irving A J. 1994. Depletion and enrichment history of sub-continental lithospheric mantle: An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. Earth Planet Sci Lett, 126: 457–472

    Article  Google Scholar 

  • Carlson R W, Irving A J, Schulze D J, Hearn Jr B C. 2004. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen. Lithos, 77: 453–472

    Article  Google Scholar 

  • Cartigny P. 2005. Stable isotopes and the origin of diamond. Elements, 1: 79–84

    Article  Google Scholar 

  • Cartigny P, Harris J W, Javoy M. 1998. Eclogitic diamond formation at Jwaneng: No room for a recycled component. Science, 280: 1421–1424

    Article  Google Scholar 

  • Castorina F, Stoppa F, Cundari A, Barbieri M. 2000. An enriched mantle source for Italy’s melilitite-carbonatite association as inferred by its Nd-Sr isotope signature. Mineral mag, 64: 625–639

    Article  Google Scholar 

  • Chakhmouradian A R. 2006. High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol, 235: 138–160

    Article  Google Scholar 

  • Chakhmouradian A R, Mumin A H, Demény A, Elliott B. 2008. Post-orogenic carbonatites at Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada): Geological setting, mineralogy and geochemistry. Lithos, 103: 503–526

    Article  Google Scholar 

  • Chen C F, Dai W, Wang Z C, Liu Y S, Li M, Becker H, Foley S F. 2019. Calcium isotope fractionation during magmatic processes in the upper mantle. Geochim Cosmochim Acta, 249: 121–137

    Article  Google Scholar 

  • Chen C F, Liu Y S, Feng L, Foley S F, Zhou L, Ducea M N, Hu Z C. 2018. Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton. Geochim Cosmochim Acta, 238: 55–67

    Article  Google Scholar 

  • Chen C F, Liu Y S, Foley S F, Ducea M N, Geng X L, Zhang W, Xu R, Hu Z C, Zhou L, Wang Z C. 2017. Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton. Chem Geol, 466: 641–653

    Article  Google Scholar 

  • Chen C F, Liu Y S, Foley S F, Ducea M N, He D T, Hu Z C, Chen W, Zong K Q. 2016. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones. Geology, 44: 1039–1042

    Article  Google Scholar 

  • Chen L H, Zeng G, Jiang S Y, Hofmann A W, Xu X S, Pan M B. 2009. Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China. Earth Planet Sci Lett, 286: 426–435

    Article  Google Scholar 

  • Chen W, Lu J, Jiang S Y, Ying Y C, Liu Y S. 2018. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites. Chem Geol, 494: 80–95

    Article  Google Scholar 

  • Chen W, Simonetti A. 2015. Isotopic (Pb, Sr, Nd, C, O) evidence for plume-related sampling of an ancient, depleted mantle reservoir. Lithos, 216–217: 81–92

    Article  Google Scholar 

  • Cheng Z, Zhang Z, Hou T, Santosh M, Chen L, Ke S, Xu L. 2017. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochim Cosmochim Acta, 202: 159–178

    Article  Google Scholar 

  • Chepurov A I, Sonin V M, Zhimulev E I, Chepurov A A, Tomilenko A A. 2011. On the formation of element carbon during decomposition of CaCO3 at high P-T parameters under reducing conditions. Dokl Earth Sci, 441: 1738–1741

    Article  Google Scholar 

  • Connolly J A D. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett, 236: 524–541

    Article  Google Scholar 

  • Conticelli S, Avanzinelli R, Ammannati E, Casalini M. 2015. The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean. Lithos, 232: 174–196

    Article  Google Scholar 

  • Conticelli S, Avanzinelli R, Poli G, Braschi E, Giordano G. 2013. Shift from lamproite-like to leucititic rocks: Sr-Nd-Pb isotope data from the Monte Cimino volcanic complex vs. the Vico stratovolcano, Central Italy. Chem Geol, 353: 246–266

    Article  Google Scholar 

  • Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelevic D, Venturelli G. 2009. Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos, 107: 68–92

    Article  Google Scholar 

  • Currie C A, Beaumont C, Huismans R S. 2007. The fate of subducted sediments: A case for backarc intrusion and underplating. Geology, 35: 1111–1114

    Article  Google Scholar 

  • D’Orazio M, Innocenti F, Tonarini S, Doglioni C. 2007. Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos, 98: 313–334

    Article  Google Scholar 

  • Dai J G, Wang C S, Liu S A, Qian X Y, Zhu D C, Ke S. 2016. Deep carbon cycle recorded by calcium-silicate rocks (rodingites) in a subduction-related ophiolite. Geophys Res Lett, 43: 11,635–11,643

    Article  Google Scholar 

  • Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem, 75: 183–229

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 149: 288–305

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M. 2006. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 440: 659–662

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 298: 1–13

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island Basalts. J Petrol, 48: 2093–2124

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85

    Article  Google Scholar 

  • Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493: 211–215

    Article  Google Scholar 

  • Debret B, Bouilhol P, Pons M L, Williams H. 2018. Carbonate transfer during the onset of slab devolatilization: New insights from Fe and Zn stable isotopes. J Petrol, 59: 1145–1166

    Article  Google Scholar 

  • Deines P. 1968. The carbon and oxygen isotopic composition of carbonates from a mica peridotite dike near Dixonville, Pennsylvania. Geochim Cosmochim Acta, 32: 613–625

    Article  Google Scholar 

  • Deng L X, Liu Y S, Zong K Q, Zhu L Y, Xu R, Hu Z C, Gao S. 2017. Trace element and Sr isotope records of multi-episode carbonatite metasomatism on the eastern margin of the North China Craton. Geochem Geophys Geosyst, 18: 220–237

    Article  Google Scholar 

  • Doucelance R, Hammouda T, Moreira M, Martins J C. 2010. Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case. Geochim Cosmochim Acta, 74: 7261–7282

    Article  Google Scholar 

  • Eldholm O, Thomas E. 1993. Environmental impact of volcanic margin formation. Earth Planet Sci Lett, 117: 319–329

    Article  Google Scholar 

  • Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie F T, Moore III B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle: A test of our knowledge of Earth as a system. Science, 290: 291–296

    Article  Google Scholar 

  • Falloon T J, Danyushevsky L V. 2000. Melting of Refractory Mantle at 1.5, 2 and 2.5 GPa under Anhydrous and H2O-undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting. J Petrol, 41: 257–283

    Article  Google Scholar 

  • Falloon T J, Green D H, Danyushevsky L V, Faul U H. 1999. Peridotite melting at 1.0 and 1.5 GPa: An experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. J Petrol, 40: 1343–1375

    Article  Google Scholar 

  • Fantle M S, Tipper E T. 2014. Calcium isotopes in the global biogeo-chemical Ca cycle: Implications for development of a Ca isotope proxy. Earth-Sci Rev, 129: 148–177

    Article  Google Scholar 

  • Fischer T P. 2008. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem J, 42: 21–38

    Article  Google Scholar 

  • Foley S F. 2008. Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci, 1: 503–510

    Article  Google Scholar 

  • Foley S F. 2011. A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J Petrol, 52: 1363–1391

    Article  Google Scholar 

  • Foley S F, Pintér Z. 2018. Chapter 1—Primary Melt Compositions in the Earth’s Mantle. In: Kono Y, Sanloup C, eds. Magmas Under Pressure. Elsevier. 3–42

  • Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112: 274–283

    Article  Google Scholar 

  • Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci, 4: 703–706

    Article  Google Scholar 

  • Fujii T, Moynier F, Blichert-Toft J, Albarède F. 2014. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochim Cosmochim Acta, 140: 553–576

    Article  Google Scholar 

  • Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contrib Mineral Petrol, 131: 323–346

    Article  Google Scholar 

  • Galvez M E, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J. 2013. Graphite formation by carbonate reduction during subduction. Nat Geosci, 6: 473–477

    Article  Google Scholar 

  • Gervasoni F, Klemme S, Rohrbach A, Grützner T, Berndt J. 2017. Experimental constraints on mantle metasomatism caused by silicate and carbonate melts. Lithos, 282–283: 173–186

    Article  Google Scholar 

  • Gleason G C, Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247: 1–23

    Article  Google Scholar 

  • Gorman P J, Kerrick D M, Connolly J A D. 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst, 7: Q04007

    Article  Google Scholar 

  • Grassi D, Schmidt M W. 2011a. Melting of carbonated pelites at 8–13 GPa: Generating K-rich carbonatites for mantle metasomatism. Contrib Mineral Petrol, 162: 169–191

    Article  Google Scholar 

  • Grassi D, Schmidt M W. 2011b. The melting of carbonated pelites from 70 to 700 km depth. J Petrol, 52: 765–789

    Article  Google Scholar 

  • Lev O, Sheintuch M, Pisemen L M, Yarnitzkyt C. 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature, 336: 459–462

    Article  Google Scholar 

  • Grotzinger J P, Fike D A, Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci, 4: 285–292

    Article  Google Scholar 

  • Grove T L, Parman S W. 2004. Thermal evolution of the Earth as recorded by komatiites. Earth Planet Sci Lett, 219: 173–187

    Article  Google Scholar 

  • Hacker B R. 2008. H2O subduction beyond arcs. Geochem Geophys Geosyst, 9: Q03001

    Article  Google Scholar 

  • Hagen-Peter G, Cottle J M. 2016. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc. Lithos, 262: 677–698

    Article  Google Scholar 

  • Hammouda T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 214: 357–368

    Article  Google Scholar 

  • Hammouda T, Keshav S. 2015. Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chem Geol, 418: 171–188

    Article  Google Scholar 

  • Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology, 28: 283–285

    Article  Google Scholar 

  • Hansen J, Lacis A, Ruedy R, Sato M. 1992. Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett, 19: 215–218

    Article  Google Scholar 

  • Hart S R, Dunn T. 1993. Experimental cpx/melt partitioning of 24 trace elements. Contr Mineral Petrol, 113: 1–8

    Article  Google Scholar 

  • Hazen R M, Schiffries C M. 2013. Why deep carbon? Rev Mineral Geochem, 75: 1–6

    Article  Google Scholar 

  • He D T, Liu Y S, Gao C G, Chen C F, Hu Z C, Gao S. 2017. SiC-dominated ultra-reduced mineral assemblage in carbonatitic xenoliths from the Dalihu basalt, Inner Mongolia, China. Am Miner, 102: 312–320

    Article  Google Scholar 

  • Hilton D R, Fischer T P, Marty B. 2002. Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem, 47: 319–370

    Article  Google Scholar 

  • Hirose K. 1997. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25: 42–44

    Article  Google Scholar 

  • Hirose K, Kushiro I. 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett, 114: 477–489

    Article  Google Scholar 

  • Hirth G, Kohlstedt D L. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J, ed. Inside the Subduction Factory. Washington D C: Geophys Monogr Seri AGU. 83–105

    Chapter  Google Scholar 

  • Hoernle K, Tilton G, Le Bas M J, Duggen S, Garbe-Schönberg D. 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol, 142: 520–542

    Article  Google Scholar 

  • Hoffman P F, Kaufman A J, Halverson G P, Schrag D P. 1998. A Neoproterozoic snowball Earth. Science, 281: 1342–1346

    Article  Google Scholar 

  • Hou Z, Tian S, Yuan Z, **e Y, Yin S, Yi L, Fei H, Yang Z. 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. Earth Planet Sci Lett, 244: 234–250

    Article  Google Scholar 

  • Hu Y, Teng F Z, Zhang H F, **ao Y, Su B X. 2016. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites. Geochim Cosmochim Acta, 185: 88–111

    Article  Google Scholar 

  • Huang J, Ke S, Gao Y, **ao Y, Li S. 2015a. Magnesium isotopic compositions of altered oceanic basalts and gabbros from IODP site 1256 at the East Pacific Rise. Lithos, 231: 53–61

    Article  Google Scholar 

  • Huang J, Li S G, **ao Y, Ke S, Li W Y, Tian Y. 2015b. Origin of low δ 26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim Cosmochim Acta, 164: 298–317

    Article  Google Scholar 

  • Huang S, Farkaš J, Jacobsen S B. 2011. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 75: 4987–4997

    Article  Google Scholar 

  • Hulett S R W, Simonetti A, Rasbury E T, Hemming N G. 2016. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nat Geosci, 9: 904–908

    Article  Google Scholar 

  • Huybers P, Langmuir C. 2009. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet Sci Lett, 286: 479–491

    Article  Google Scholar 

  • Iacono Marziano G, Gaillard F, Pichavant M. 2007. Limestone assimilation and the origin of CO2 emissions at the Alban Hills (Central Italy): Constraints from experimental petrology. J Volcanol Geotherm Res, 166: 91–105

    Article  Google Scholar 

  • Iacono Marziano G, Gaillard F, Pichavant M. 2008. Limestone assimilation by basaltic magmas: An experimental re-assessment and application to Italian volcanoes. Contrib Mineral Petrol, 155: 719–738

    Article  Google Scholar 

  • ** Z M, Zhang J, GreenII H W, ** S. 2001. Eclogite rheology: Implications for subducted lithosphere. Geology, 29: 667–670

    Article  Google Scholar 

  • John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. 2012. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat Geosci, 5: 489–492

    Article  Google Scholar 

  • John T, Scambelluri M, Frische M, Barnes J D, Bach W. 2011. Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett, 308: 65–76

    Article  Google Scholar 

  • Johnson K T M. 1994. Experimental cpx/ and garnet/melt partitioning of REE and other trace elements at high pressures: Petrogenetic implications. Mineral Mag, 58: 454–455

    Article  Google Scholar 

  • Jones A P, Genge M, Carmody L. 2013. Carbonate melts and carbonatites. Rev Mineral Geochem, 75: 289–322

    Article  Google Scholar 

  • Jull M, Kelemen P B. 2001. On the conditions for lower crustal convective instability. J Geophys Res, 106: 6423–6446

    Article  Google Scholar 

  • Kang J T, Ionov D A, Liu F, Zhang C L, Golovin A V, Qin L P, Zhang Z F, Huang F. 2017. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth Planet Sci Lett, 474: 128–137

    Article  Google Scholar 

  • Kato Y, Fu**aga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci, 4: 535–539

    Article  Google Scholar 

  • Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H T, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proc Natl Acad Sci USA, 110: 9663–9668

    Article  Google Scholar 

  • Ke S, Teng F Z, Li S G, Gao T, Liu S A, He Y, Mo X. 2016. Mg, Sr, and O isotope geochemistry of syenites from northwest **njiang, China: Tracing carbonate recycling during Tethyan oceanic subduction. Chem Geol, 437: 109–119

    Article  Google Scholar 

  • Kelemen P B, Hanghoj K, Greene A R. 2003. One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust. In: Rudnick R L, ed. The Crust: Treatise on Geochemistry. Elsevier. 593–659

  • Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA, 112: E3997–E4006

    Article  Google Scholar 

  • Kelemen P B, Matter J, Streit E E, Rudge J F, Curry W B, Blusztajn J. 2011. Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage. Annu Rev Earth Planet Sci, 39: 545–576

    Article  Google Scholar 

  • Kerrick D M. 2001. Present and past nonanthropogenic CO2 degassing from the solid earth. Rev Geophys, 39: 565–585

    Article  Google Scholar 

  • Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature, 411: 293–296

    Article  Google Scholar 

  • Kiseeva E S, Litasov K D, Yaxley G M, Ohtani E, Kamenetsky V S. 2013. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J Petrol, 54: 1555–1583

    Article  Google Scholar 

  • Kiseeva E S, Yaxley G M, Hermann J, Litasov K D, Rosenthal A, Kamenetsky V S. 2012. An experimental study of carbonated eclogite at 3.5–5.5 GPa—Implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol, 53: 727–759

    Article  Google Scholar 

  • Klemme S, van der Laan S R, Foley S F, Günther D. 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett, 133: 439–448

    Article  Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett, 148: 193–205

    Article  Google Scholar 

  • Kumar A, Charan S N, Gopalan K, Macdougall J D. 1998. A long-lived enriched mantle source for two Proterozoic carbonatite complexes from Tamil Nadu, Southern India. Geochim Cosmochim Acta, 62: 515–523

    Article  Google Scholar 

  • Laporte D, Toplis M J, Seyler M, Devidal J M. 2004. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: Application to partial melting of depleted peridotite. Contrib Mineral Petrol, 146: 463–484

    Article  Google Scholar 

  • Lee C T A, Shen B, Slotnick B S, Liao K, Dickens G R, Yokoyama Y, Lenardic A, Dasgupta R, Jellinek M, Lackey J S, Schneider T, Tice M M. 2013. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere, 9: 21–36

    Article  Google Scholar 

  • Li S. 2015. Tracing deep carbon recycling by Mg isotopes. Earth Sci Front, 22: 143–159

    Google Scholar 

  • Li S, Wang Y. 2018. Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China craton—Geodynamic effects of deep recycled carbon. Sci China Earth Sci, 61: 853–868

    Article  Google Scholar 

  • Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, **a Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2016. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev, 4: 111–120

    Google Scholar 

  • Liu D, Zhao Z, Zhu D C, Niu Y, Widom E, Teng F Z, DePaolo D J, Ke S, Xu J F, Wang Q, Mo X. 2015. Identifying mantle carbonatite metasomatism through Os-Sr-Mg isotopes in Tibetan ultrapotassic rocks. Earth Planet Sci Lett, 430: 458–469

    Article  Google Scholar 

  • Liu S A, Wang Z Z, Li S G, Huang J, Yang W. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sci Lett, 444: 169–178

    Article  Google Scholar 

  • Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north china orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 51: 537–571

    Article  Google Scholar 

  • Liu Y S, Gao S, Lee C T A, Hu S H, Liu X M, Yuan H L. 2005. Meltperidotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 234: 39–57

    Article  Google Scholar 

  • Liu Y S, He D, Gao C G, Foley S, Gao S, Hu Z C, Zong K Q, Chen H H. 2015. First direct evidence of sedimentary carbonate recycling in sub-duction-related xenoliths. Sci Rep, 5: 11547

    Article  Google Scholar 

  • Lofgren G E, Huss G R, Wasserburg G J. 2006. An experimental study of trace-element partitioning between Ti-Al-clinopyroxene and melt: Equilibrium and kinetic effects including sector zoning. Am Miner, 91: 1596–1606

    Article  Google Scholar 

  • Mackenzie F T, Morse J W. 1992. Sedimentary carbonates through Phanerozoic time. Geochim Cosmochim Acta, 56: 3281–3295

    Article  Google Scholar 

  • Malusà M G, Frezzotti M L, Ferrando S, Brandmayr E, Romanelli F, Panza G F. 2018. Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate trends. Sci Rep, 8: 4740

    Article  Google Scholar 

  • Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat Geosci, 5: 862–867

    Article  Google Scholar 

  • Mason E, Edmonds M, Turchyn A V. 2017. Remobilization of crustal carbon may dominate volcanic arc emissions. Science, 357: 290–294

    Article  Google Scholar 

  • McDonough W F, Sun S S. 1995. The composition of the earth. Chem Geol, 120: 223–253

    Article  Google Scholar 

  • Miyazaki T, Miyazaki T, Kagami H, Shuto K, Morikiyo T, Mohan V R, Rajasekaran K C. 2000. Rb-Sr geochronology, Nd-Sr isotopes and whole rock geochemistry of yelagiri and sevattur syenites, Tamil Nadu, South India. Gondwana Res, 3: 39–53

    Article  Google Scholar 

  • Molina J F, Poli S. 2000. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett, 176: 295–310

    Article  Google Scholar 

  • Moynier F, Vance D, Fujii T, Savage P. 2017. The isotope geochemistry of zinc and copper. Rev Mineral Geochem, 82: 543–600

    Article  Google Scholar 

  • Müller R D, Dutkiewicz A. 2018. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci Adv, 4: eaaq0500

    Article  Google Scholar 

  • Ogasawara Y, Ohta M, Fukasawa K, Katayama I, Maruyama S. 2000. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. Isl Arc, 9: 400–416

    Article  Google Scholar 

  • Pan D, Spanu L, Harrison B, Sverjensky D A, Galli G. 2013. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc Natl Acad Sci USA, 110: 6646–6650

    Article  Google Scholar 

  • Pandit M K, Sial A N, Sukumaran G B, Pimentel M M, Ramasamy A K, Ferreira V P. 2002. Depleted and enriched mantle sources for Paleo- and Neoproterozoic carbonatites of southern India: Sr, Nd, C-O isotopic and geochemical constraints. Chem Geol, 189: 69–89

    Article  Google Scholar 

  • Parman S W, Grove T L. 2004. Harzburgite melting with and without H2O: Experimental data and predictive modeling. J Geophys Res, 109: 1–20

    Article  Google Scholar 

  • Pearson D G, Shirey S B, Carlson R W, Boyd F R, Pokhilenko N P, Shimizu N. 1995. Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim Cosmochim Acta, 59: 959–977

    Google Scholar 

  • Pichat S, Douchet C, Albarède F. 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet Sci Lett, 210: 167–178

    Article  Google Scholar 

  • Pickering-Witter J, Johnston A D. 2000. The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib Mineral Petrol, 140: 190–211

    Article  Google Scholar 

  • Planavsky N J, Rouxel O J, Bekker A, Lalonde S V, Konhauser K O, Reinhard C T, Lyons T W. 2010. The evolution of the marine phosphate reservoir. Nature, 467: 1088–1090

    Article  Google Scholar 

  • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325–394

    Article  Google Scholar 

  • Poli S. 2015. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat Geosci, 8: 633–636

    Article  Google Scholar 

  • Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet Sci Lett, 278: 350–360

    Article  Google Scholar 

  • Ravna E K, Zozulya D, Kullerud K, Corfu F, Nabelek P I, Janák M, Slagstad T, Davidsen B, Selbekk R S, Schertl H P. 2017. Deep-seated carbonatite intrusion and metasomatism in the UHP Tromsø Nappe, Northern Scandinavian Caledonides—A natural example of generation of carbonatite from carbonated eclogite. J Petrol, 58: 2403–2428

    Article  Google Scholar 

  • Rea D K, Zachos J C, Owen R M, Gingerich P D. 1990. Global change at the Paleocene-Eocene boundary: Climatic and evolutionary con-sequences of tectonic events. Palaeogeogr Palaeoclimatol Palaeoecol, 79: 117–128

    Article  Google Scholar 

  • Richardson S H, Erlank A J, Hart S R. 1985. Kimberlite-borne garnet peridotite xenoliths from old enriched subcontinental lithosphere. Earth Planet Sci Lett, 75: 116–128

    Article  Google Scholar 

  • Rivalenti G, Vannucci R, Rampone E, Mazzucchelli M, Piccardo G B, Piccirillo E M, Bottazzi P, Ottolini L. 1996. Peridotite clinopyroxene chemistry reflects mantle processes rather than continental versus oceanic settings. Earth Planet Sci Lett, 139: 423–437

    Article  Google Scholar 

  • Robinson J A C, Wood B J, Blundy J D. 1998. The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet Sci Lett, 155: 97–111

    Article  Google Scholar 

  • Rohrbach A, Schmidt M W. 2011. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature, 472: 209–212

    Article  Google Scholar 

  • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophys Geosyst, 5: Q05004

    Article  Google Scholar 

  • Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, Romanek C S, Sánchez-Navas A, Vasconcelos C. 2011. Experimentally determined biomediated Sr partition coefficient for dolomite: Significance and implication for natural dolomite. Geochim Cosmochim Acta, 75: 887–904

    Article  Google Scholar 

  • Schertl H P, Okay A I. 1994. A coesite inclusion in dolomite in Dabie Shan, China: Petrological and rheological significance. European J Mineral, 6: 995–1000

    Article  Google Scholar 

  • Schleicher H, Kramm U, Pernicka E, Schidlowski M, Schmidt F, Sub-ramanian V, Todt W, Viladkar S G. 1998. Enriched subcontinental upper mantle beneath southern India: Evidence from Pb, Nd, Sr, and C O isotopic studies on Tamil Nadu Carbonatites. J Petrol, 39: 1765–1785

    Article  Google Scholar 

  • Schwab B E, Johnston A D. 2001. Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol, 42: 1789–1811

    Article  Google Scholar 

  • Schwarzenbach E M, Früh-Green G L, Bernasconi S M, Alt J C, Plas A. 2013. Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems. Chem Geol, 351: 115–133

    Article  Google Scholar 

  • Shi W, Li C, Algeo T J. 2017. Quantitative model evaluation of organic carbon oxidation hypotheses for the Ediacaran Shuram carbon isotopic excursion. Sci China Earth Sci, 60: 2118–2127

    Article  Google Scholar 

  • Shinohara H. 2013. Volatile flux from subduction zone volcanoes: Insights from a detailed evaluation of the fluxes from volcanoes in Japan. J Volcanol Geotherm Res, 268: 46–63

    Article  Google Scholar 

  • Shirey S B, Cartigny P, Frost D J, Keshav S, Nestola F, Nimis P, Pearson D G, Sobolev N V, Walter M J. 2013. Diamonds and the geology of mantle carbon. Rev Mineral Geochem, 75: 355–421

    Article  Google Scholar 

  • Sleep N H, Zahnle K. 2001. Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res, 106: 1373–1399

    Article  Google Scholar 

  • Smith M P, Moore K, Kavecsánszki D, Finch A A, Kynicky J, Wall F. 2016. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geosci Front, 7: 315–334

    Article  Google Scholar 

  • Song S, Su L, Niu Y, Lai Y, Zhang L. 2009. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim Cosmochim Acta, 73: 1737–1754

    Article  Google Scholar 

  • Sossi P A, Nebel O, O’Neill H S C, Moynier F. 2018. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chem Geol, 477: 73–84

    Article  Google Scholar 

  • Stagno V, Frost D J. 2010. Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett, 300: 72–84

    Article  Google Scholar 

  • Stagno V, Frost D J, McCammon C A, Mohseni H, Fei Y. 2015. The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib Mineral Petrol, 169: 16

    Article  Google Scholar 

  • Stagno V, Ojwang D O, McCammon C A, Frost D J. 2013. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493: 84–88

    Article  Google Scholar 

  • Stoppa F, Woolley A R. 1997. The Italian carbonatites: Field occurrence, petrology and regional significance. Mineral Petrol, 59: 43–67

    Article  Google Scholar 

  • Storey M, Duncan R A, Swisher C C. 2007. Paleocene-Eocene thermal maximum and the opening of the northeast Atlantic. Science, 316: 587–589

    Article  Google Scholar 

  • Strauss H. 1986. Carbon and sulfur isotopes in Precambrian sediments from the Canadian Shield. Geochim Cosmochim Acta, 50: 2653–2662

    Article  Google Scholar 

  • Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T. 2001. Phase relations of CaCO3 at high pressure and high temperature. Am Miner, 86: 997–1002

    Article  Google Scholar 

  • Sun Y, Teng F Z, Ying J F, Su B X, Hu Y, Fan Q C, Zhou X H. 2017. Magnesium isotopic evidence for ancient subducted oceanic crust in Lomu-like potassium-rich volcanic rocks. J Geophys Res-Solid Earth, 122: 7562–7572

    Article  Google Scholar 

  • Tao R, Zhang L, Tian M, Zhu J, Liu X, Liu J, Höfer H E, Stagno V, Fei Y. 2018. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochim Cosmochim Acta, 239: 390–408

    Article  Google Scholar 

  • Thomsen T B, Schmidt M W. 2008. Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 267: 17–31

    Article  Google Scholar 

  • Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76–79

    Article  Google Scholar 

  • Tian H C, Yang W, Li S G, Ke S, Chu Z Y. 2016. Origin of low δ 26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta, 188: 93–105

    Article  Google Scholar 

  • Tsuno K, Dasgupta R. 2011. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol, 161: 743–763

    Article  Google Scholar 

  • Tsuno K, Dasgupta R, Danielson L, Righter K. 2012. Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geo-chemical implications for the source of Central American volcanic arc. Geophys Res Lett, 39: L16307

    Article  Google Scholar 

  • Tumiati S, Tiraboschi C, Sverjensky D A, Pettke T, Recchia S, Ulmer P, Miozzi F, Poli S. 2017. Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nat Commun, 8: 616

    Article  Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401

    Article  Google Scholar 

  • Vitale Brovarone A, Martinez I, Elmaleh A, Compagnoni R, Chaduteau C, Ferraris C, Esteve I. 2017. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps. Nat Commun, 8: 14134

    Article  Google Scholar 

  • Walker A N, Rutter E H, Brodie K H. 1990. Experimental study of grain-size sensitive flow of synthetic, hot-pressed calcite rocks. Geol Soc Lond Spec Publ, 54: 259–284

    Article  Google Scholar 

  • Walker J C G, Hays P B, Kasting J F. 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res, 86: 9776–9782

    Article  Google Scholar 

  • Walker R J, Carlson R W, Shirey S B, Boyd F R. 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta, 53: 1583–1595

    Article  Google Scholar 

  • Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol, 39: 29–60

    Article  Google Scholar 

  • Walter M J, Bulanova G P, Armstrong L S, Keshav S, Blundy J D, Gudfinnsson G, Lord O T, Lennie A R, Clark S M, Smith C B, Gobbo L. 2008. Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454: 622–625

    Article  Google Scholar 

  • Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. 2011. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334: 54–57

    Article  Google Scholar 

  • Wang C Y, Liu Y S, Min N, Zong K Q, Hu Z C, Gao S. 2016. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: Evidence from peridotite xenoliths in the Datong basalts. Lithos, 261: 109–127

    Article  Google Scholar 

  • Wang S J, Teng F Z, Li S G. 2014a. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nat Commun, 5: 5328

    Article  Google Scholar 

  • Wang S J, Teng F Z, Li S G, Hong J A. 2014b. Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim Cosmochim Acta, 143: 34–48

    Article  Google Scholar 

  • Wang S J, Teng F Z, Li S G, Zhang L F, Du J X, He Y S, Niu Y. 2017. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 290–291: 94–103

    Article  Google Scholar 

  • Wang S J, Teng F Z, Rudnick R L, Li S G. 2015. The behavior of magnesium isotopes in low-grade metamorphosed mudrocks. Geochim Cosmochim Acta, 165: 435–448

    Article  Google Scholar 

  • Wang S J, Teng F Z, Scott J M. 2016. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochim Cosmochim Acta, 185: 78–87

    Article  Google Scholar 

  • Wang X J, Chen L H, Hofmann A W, Hanyu T, Kawabata H, Zhong Y, **e L W, Shi J H, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc Natl Acad Sci USA, 115: 8682–8687

    Article  Google Scholar 

  • Wang X J, Chen L H, Hofmann A W, Mao F G, Liu J Q, Zhong Y, **e L W, Yang Y H. 2017. Mantle transition zone-derived EM1 component beneath NE China: Geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett, 465: 16–28

    Article  Google Scholar 

  • Wang Y F, Zhang J F, ** Z M, GreenII H W. 2012. Mafic granulite rheology: Implications for a weak continental lower crust. Earth Planet Sci Lett, 353–354: 99–107

    Article  Google Scholar 

  • Wang Z Z, Liu S A, Chen L H, Li S G, Zeng G. 2018. Compositional transition in natural alkaline lavas through silica-undersaturated melt-lithosphere interaction. Geology, 46: 771–774

    Article  Google Scholar 

  • Wasylenki L E, Baker M, Kent A, Stolper E. 2003. Near-solidus melting of the shallow upper mantle: Partial melting experiments on depleted peridotite. J Petrol, 44: 1163–1191

    Article  Google Scholar 

  • Wignall P B, Newton R. 2003. Contrasting deep-water records from the upper permian and lower triassic of south tibet and british columbia: Evidence for a diachronous mass extinction. Palaios, 18: 153–167

    Article  Google Scholar 

  • Woodland A B, Koch M. 2003. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet Sci Lett, 214: 295–310

    Article  Google Scholar 

  • Woolley A R, Bailey D K. 2012. The crucial role of lithospheric structure in the generation and release of carbonatites: Geological evidence. Mineral Mag, 76: 259–270

    Article  Google Scholar 

  • Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53–72

    Article  Google Scholar 

  • Wu D, Liu Y S, Chen C F, Xu R, Ducea M N, Hu Z C, Zong K Q. 2017. Insitu trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton. Lithos, 288–289: 338–351

    Article  Google Scholar 

  • Wyllie P J, Huang W L. 1976. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contr Mineral Petrol, 54: 79–107

    Article  Google Scholar 

  • Wyllie P J, Tuttle O F. 1960. The system CaO-CO2-H2O and the origin of carbonatites. J Petrol, 1: 1–46

    Article  Google Scholar 

  • Xu C, Chakhmouradian A R, Taylor R N, Kynicky J, Li W, Song W, Fletcher I R. 2014. Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks. Geochim Cosmochim Acta, 143: 189–206

    Article  Google Scholar 

  • Xu C, Kynický J, Smith M P, Kopriva A, Brtnický M, Urubek T, Yang Y, Zhao Z, He C, Song W. 2017a. Origin of heavy rare earth mineralization in South China. Nat Commun, 8: 14598

    Article  Google Scholar 

  • Xu C, Kynický J, Song W, Tao R, Lü Z, Li Y, Yang Y, Pohanka M, Galiova M V, Zhang L, Fei Y. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nat Commun, 9: 2790

    Article  Google Scholar 

  • Xu C, Kynický J, Tao R, Liu X, Zhang L, Pohanka M, Song W, Fei Y. 2017b. Recovery of an oxidized majorite inclusion from Earth’s deep asthenosphere. Sci Adv, 3: e1601589

    Article  Google Scholar 

  • Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 328: 185–194

    Article  Google Scholar 

  • Yaxley G M, Brey G P. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 146: 606–619

    Article  Google Scholar 

  • Yaxley G M, Green D H. 1994. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett, 128: 313–325

    Article  Google Scholar 

  • Ying J, Zhou X, Zhang H. 2004. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos, 75: 413–426

    Article  Google Scholar 

  • Ying Y, Chen W, Lu J, Jiang S Y, Yang Y. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos, 290–291: 159–171

    Article  Google Scholar 

  • Zack T, Brumm R. 1998. Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxene. Proceedings of the 7th International Kimberlite Conference. 986–988

  • Zhang H F. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Sci Bull, 54: 3417–3437

    Article  Google Scholar 

  • Zhang J, Wang C, Wang Y. 2012. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 149: 91–99

    Article  Google Scholar 

  • Zong K, Liu Y. 2018. Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China. Sci China Earth Sci, 61: 711–729

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the two anonymous reviewers for their constructive comments on the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41530211 & 41125013) and the National Key Laboratory of Geological Processes and Mineral Resources (Grant No. MSFGPMR01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, C., He, D. et al. Deep carbon cycle in subduction zones. Sci. China Earth Sci. 62, 1764–1782 (2019). https://doi.org/10.1007/s11430-018-9426-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9426-1

Keywords

Navigation