Log in

Constraining the timing of the India-Asia continental collision by the sedimentary record

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Placing precise constraints on the timing of the India-Asia continental collision is essential to understand the successive geological and geomorphological evolution of the orogenic belt as well as the uplift mechanism of the Tibetan Plateau and their effects on climate, environment and life. Based on the extensive study of the sedimentary record on both sides of the Yarlung-Zangbo suture zone in Tibet, we review here the present state of knowledge on the timing of collision onset, discuss its possible diachroneity along strike, and reconstruct the early structural and topographic evolution of the Himalayan collided range. We define continent-continent collision as the moment when the oceanic crust is completely consumed at one point where the two continental margins come into contact. We use two methods to constrain the timing of collision onset: (1) dating the provenance change from Indian to Asian recorded by deep-water turbidites near the suture zone, and (2) dating the age of unconformities on both sides of the suture zone. The first method allowed us to constrain precisely collision onset as middle Palaeocene (59±1 Ma). Marine sedimentation persisted in the collisional zone for another 20–25 Ma locally in southern Tibet, and molassic-type deposition in the Indian foreland basin did not begin until another 10–15 Ma later. Available sedimentary evidence failed to firmly document any significant diachroneity of collision onset from the central Himalaya to the western Himalaya and Pakistan so far. Based on the Cenozoic stratigraphic record of the Tibetan Himalaya, four distinct stages can be identified in the early evolution of the Himalayan orogen: (1) middle Palaeocene-early Eocene earliest Eohimalayan stage (from 59 to 52 Ma): collision onset and filling of the deep-water trough along the suture zone while carbonate platform sedimentation persisted on the inner Indian margin; (2) early-middle Eocene early Eohimalayan stage (from 52 to 41 or 35 Ma): filling of intervening seaways and cessation of marine sedimentation; (3) late Eocene-Oligocene late Eohimalayan stage (from 41 to 25 Ma): huge gap in the sedimentary record both in the collision zone and in the Indian foreland; and (4) late Oligocene-early Miocene early Neohimalayan stage (from 26 to 17 Ma): rapid Himalayan growth and onset of molasse-type sedimentation in the Indian foreland basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharyya S K. 2007. Evolution of the Himalayan Paleogene foreland basin, influence of its litho-packet on the formation of thrust-related domes and windows in the Eastern Himalayas—A review. J Asian Earth Sci, 31: 1–17

    Article  Google Scholar 

  • Agnini C, Fornaciari E, Raffi I, Catanzariti R, Pälike H, Backman J, Rio D. 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl Stratigr, 47: 131–181

    Article  Google Scholar 

  • Aitchison J C, Ali J R, Chan A, Davis A M, Lo C H. 2009. Tectonic implications of felsic tuffs within the Lower Miocene Gangrinboche conglomerates, southern Tibet. J Asian Earth Sci, 34: 287–297

    Article  Google Scholar 

  • Aitchison J C, Badengzhu J C, Davis A M, Liu J, Luo H, Malpas J G, McDermid I R C, Wu H, Ziabrev S V, Zhou M. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth Planet Sci Lett, 183: 231–244

    Article  Google Scholar 

  • Aitchison J C, McDermid I R C, Ali J R, Davis A M, Zyabrev S V. 2007. Shoshonites in southern Tibet record Late Jurassic rifting of a Tethyan Intraoceanic Island Arc. J Geol, 115: 197–213

    Article  Google Scholar 

  • Aitchison J C, **a X, Baxter A T, Ali J R. 2011. Detrital zircon U-Pb ages along the Yarlung-Tsangpo suture zone, Tibet: Implications for oblique convergence and collision between India and Asia. Gondwana Res, 20: 691–709

    Article  Google Scholar 

  • An W, Hu X M, Garzanti E. 2017. Sandstone provenance and tectonic evolution of the **ukang Mélange from Neotethyan subduction to India-Asia collision (Yarlung-Zangbo suture, south Tibet). Gondwana Res, 41: 222–234

    Article  Google Scholar 

  • An Z S, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62–66

    Article  Google Scholar 

  • Ando H, Tomosugi T. 2005. Unconformity between the Upper Maastrichtian and Upper Paleocene in the Hakobuchi Formation, north Hokkaido, Japan: A major time gap within the Yezo forearc basin sediments. Cretac Res, 26: 85–95

    Article  Google Scholar 

  • Beck R A, Burbank D W, Sercombe W J, Riley G W, Barndt J K, Berry J R, Afzal J, Khan A M, Jurgen H, Metje J, Cheema A, Shafique N A, Lawrence R D, Khan M A. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. Nature, 373: 55–58

    Article  Google Scholar 

  • Bhatia S, Bhargava O, Singh B P, Bagi H. 2013. Sequence stratigraphic framwork of the paleogene succession of the himalayan foreland basin: A case study from the Shimla Hills. J Palaeontol Soc Ind, 58: 21–38

    Google Scholar 

  • Blondeau A, Bassoullet J P, Colchen M, Han T L, Marcoux J, Mascle G, van Haver T. 1986. Disparition des formations marines a l' Eocene Inferieur Himalaya. In: Le Fort P, Colchen M, Montenat C, eds. Evolution des Domaines Orogeniques d' Asie Meridionale (de la Turquie al. Indonesie). Vol 47: Nancy, Sciences de la Terre. Nancy. 103–111

    Google Scholar 

  • Cai F L, Ding L, Zhang Q H, Xu X X, Yue Y H, Zhang L Y, Xu Z. 2008. Provenance and tectonic evolution of the Yalu-Zangbo peripheral foreland basin (in Chinese with English abstract). Acta Petrol Sin, 24: 430–446

    Google Scholar 

  • Cai F L, Ding L, Yue Y H. 2011. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth Planet Sci Lett, 305: 195–206

    Article  Google Scholar 

  • Lap J. 2006. Paleocene Deep-Marine Sediments in Southern Central Tibet: Indications of An Arc-Continent Collision. Hong Kong: The University of Hong Kong. 201

    Google Scholar 

  • Chang C F, Zheng X. 1973. Tectonic features of the Mount Jolmo Lungma region in southern Tibet, China (in Chinese with English abstract). Sci Geol Sin, 8: 1–12

    Google Scholar 

  • Chen G M, Li G C, Qu J C. 1984. The mélange in South Tibet and its geological significance Himalaya Geology (in Chinese). Bei**g: Bei**g Publishing House. 19–25

    Google Scholar 

  • Chu M F, Chung S L, Song B, Liu D, O’Reilly S Y, Pearson N J, Ji J, Wen D J. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34: 745–748

    Article  Google Scholar 

  • Chung S L, Chu M F, Zhang Y, **e Y, Lo C H, Lee T Y, Lan C Y, Li X, Zhang Q, Wang Y. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev, 68: 173–196

    Article  Google Scholar 

  • Clementz M, Bajpai S, Ravikant V, Thewissen J G M, Saravanan N, Singh I B, Prasad V. 2011. Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology, 39: 15–18

    Article  Google Scholar 

  • Copley A, Avouac J P, Royer J Y. 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J Geophys Res, 115: B03410

    Article  Google Scholar 

  • Crampton S, Allen P. 1995. Recognition of forebulge unconformities associated with early stage foreland basin development: Example from the North Alpine Foreland Basin. AAPG Bull, 79: 1495–1514

    Google Scholar 

  • Critelli S, Garzanti E. 1994. Provenance of the Lower Tertiary Murree redbeds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas. Sediment Geol, 89: 265–284

    Article  Google Scholar 

  • Curray J R, Emmel F J, Moore D G. 2002. The Bengal Fan: Morphology, geometry, stratigraphy, history and processes. Mar Pet Geol, 19: 1191–1223

    Article  Google Scholar 

  • Davis A M, Aitchison J C, Luo H, Zyabrev S. 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sediment Geol, 150: 247–273

    Article  Google Scholar 

  • De Celles P G, Gehrels G E, Najman Y, Martin A J, Carter A, Garzanti E. 2004. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet Sci Lett, 227: 313–330

    Article  Google Scholar 

  • De Celles P G, Gehrels G E, Quade J, Ojha T P, Kapp P A, Upreti B N. 1998. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Geol Soc Am Bull, 110: 2–21

    Article  Google Scholar 

  • De Celles P G, Giles K A. 1996. Foreland basin systems. Basin Res, 8: 105–123

    Article  Google Scholar 

  • De Celles P G, Kapp P, Gehrels G E, Ding L. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33: 824–849

    Article  Google Scholar 

  • De Celles P G, Kapp P, Quade J, Gehrels G E. 2011. Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Geol Soc Am Bull, 123: 1337–1362

    Article  Google Scholar 

  • Dewey J F, Bird J M. 1970. Mountain belts and the new global tectonics. J Geophys Res, 75: 2625–2647

    Article  Google Scholar 

  • Dewey J F, Shackleton R M, Chengfa C, Yiyin S. 1988. The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc A-Math Phys Eng Sci, 327: 379–413

    Article  Google Scholar 

  • Dickinson W R. 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G G, ed. Provenance of Arenites. Dordrecht, Reidel. NATO ASI Series, 148: 333–361

    Chapter  Google Scholar 

  • Ding L, Kapp P, Wan X Q. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: TC3001

    Article  Google Scholar 

  • Ding L. 2003. Paleocene deep-water sediments and radiolarian faunas: Implications for evolution of Yarlung-Zangbo foreland basin, southern Tibet. Sci China Ser D-Earth Sci, 46: 84

    Article  Google Scholar 

  • Ding L, Cai F L, Zhang Q H, Zhang L Y, Xu Q, Yang D, Liu D L, Zhong D L. 2009. Provenance and tectonic evolution of the foreland basin system in Candese-Himalayan collisional orogen belt (in Chinese with English abstract). Chin J Geol, 44: 1289–1311

    Google Scholar 

  • Ding L, Qasim M, Jadoon I A K, Khan M A, Xu Q, Cai F, Wang H, Baral U, Yue Y. 2016. The India-Asia collision in north Pakistan: Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet Sci Lett, 455: 49–61

    Article  Google Scholar 

  • Ding L, Cai F L, Wang H Q, Song P P, Ji W Q, Xu Q. 2017. Timing, diachronlogy, and evolution of the India-Eurasia collision. Sci China Earth Sci, doi: 10.1007/s11430-016-5244-x

  • Donaldson D G, Webb A A G, Menold C A, Kylander-Clark A R C, Hacker B R. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology, 41: 835–838

    Article  Google Scholar 

  • Fang A M, Yan Z, Liu X H, Pan Y S, Li J L, Yu L J, Tao J R. 2004. The age of the plant fossil assemblage in the Liuqu Conglomerate of southern Tibet and its tectonic significance (in Chinese with English abstract). Prog Nat Sci, 14: 1419–1427

    Google Scholar 

  • Gao Y L, Tang Y Q. 1984. The Tectonic melange in South Tibet Himalaya Geology (II) (in Chinese). Bei**g: Geological Publishing House. 27–44

    Google Scholar 

  • Gansser A. 1964. Geology of the Himalayas. New York: John Wiley & Sons. 289

  • Garzanti E. 2008. Comment on “When and where did India and Asia collide?” by Jonathan C. Aitchison, Jason R. Ali, and Aileen M. Davis. J Geophys Res, 113: B04411

    Google Scholar 

  • Garzanti E. 2016. From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sediment Geol, 336: 3–13

    Article  Google Scholar 

  • Garzanti E, Hu X. 2015. Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan-related uplift? Gondwana Res, 28: 165–178

    Article  Google Scholar 

  • Garzanti E, Malusà M G. 2008. The Oligocene Alps: Domal unroofing and drainage development during early orogenic growth. Earth Planet Sci Lett, 268: 487–500

    Article  Google Scholar 

  • Garzanti E, Baud A, Mascle G. 1987. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodin Acta, 1: 297–312

    Article  Google Scholar 

  • Garzanti E, Critelli S, Ingersoll R V. 1996. Paleogeographic and paleotectonic evolution of the Himalayan Range as reflected by detrital modes of Tertiary sandstones and modern sands (Indus transect, India and Pakistan). Geol Soc Am Bull, 108: 631–642

    Article  Google Scholar 

  • Gingerich P D, Abbas S G, Arif M. 1997. Early Eocene Quettacyon parachai (Condylarthra) from the Ghazij Formation of Baluchistan (Pakistan): Oldest Cenozoic land mammal from south Asia. J Vertebr Paleontol, 17: 629–637

    Article  Google Scholar 

  • Green O R, Searle M P, Corfield R I, Corfield R M. 2008. Cretaceous-Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (Northwest India). J Geol, 116: 331–353

    Article  Google Scholar 

  • Henderson A L, Najman Y, Parrish R, Bou Dagher-Fadel M, Barford D, Garzanti E, Andò S. 2010. Geology of the Cenozoic Indus Basin sedimentary rocks: Paleoenvironmental interpretation of sedimentation from the western Himalaya during the early phases of India-Eurasia collision. Tectonics, 29: TC6015

    Article  Google Scholar 

  • Henderson A L, Najman Y, Parrish R, Mark D F, Foster G L. 2011. Constraints to the timing of India-Eurasia collision; A re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus-Tsangpo Suture Zone, Ladakh, India. Earth-Sci Rev, 106: 265–292

    Article  Google Scholar 

  • Hodges K V. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull, 112: 324–350

    Article  Google Scholar 

  • Homke S, Verges J, Serra-Kiel J, Bernaola G, Sharp I, Garces M, Montero-Verdu I, Karpuz R, Goodarzi M H. 2009. Late Cretaceous-Paleocene formation of the proto-Zagros foreland basin, Lurestan Province, SW Iran. Geol Soc Am Bull, 121: 963–978

    Article  Google Scholar 

  • Hou Z Q, Mo X X, Gao Y F, Yang Z M, Dong G C, Ding L. 2006. Early Processes and Tectonic Model for the Indian-Asian Continental Coll ision: Evidence from the Cenozoic Gangdese Igneous Rocks in Tibet (in Chinese with English abstract). Acta Geol Sin, 80: 1233–1248

    Google Scholar 

  • Hu X M, An W, Wang J G, Garzanti E, Guo R H. 2014. Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion. Tectonophysics, 621: 60–68

    Article  Google Scholar 

  • Hu X M, Garzanti E, Moore T, Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43: 859–862

    Article  Google Scholar 

  • Hu X M, Garzanti E, Wang J, Huang W, An W, Webb A. 2016b. The timing of India-Asia collision onset—Facts, theories, controversies. Earth-Sci Rev, 160: 264–299

    Article  Google Scholar 

  • Hu X M, Jansa L, Wang C S. 2008. Upper Jurassic-Lower Cretaceous stratigraphy in south-eastern Tibet: A comparison with the western Himalayas. Cretac Res, 29: 301–315

    Article  Google Scholar 

  • Hu X M, Sinclair H D, Wang J G, Jiang H H, Wu F Y. 2012. Late Cretaceous-Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: Implications for the timing of India-Asia initial collision. Basin Res, 24: 520–543

    Article  Google Scholar 

  • Hu X M, Wang J G, Bou Dagher-Fadel M, Garzanti E, An W. 2016a. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the **gaze forearc basin, South Tibet. Gondwana Res, 32: 76–92

    Article  Google Scholar 

  • Hu X M, Wang C S, Li X H, Chen L. 2006. Sedimentary facies of the uppermost Jurassic and Lower Cretaceous in Gucuo area, southern Tibet (in Chinese with English abstract). J Paleogeogr, 8: 175–186

    Google Scholar 

  • Huang B, Cheng J, Yi Z. 2010. Paleomagnetic discussion of when and where India and Asia initially collided. Chin (in Chinese). J Geophys, 53: 2045–2058

    Google Scholar 

  • Jadoul F, Berra F, Garzanti E. 1998. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet). J Asian Earth Sci, 16: 173–194

    Article  Google Scholar 

  • Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 262: 229–245

    Article  Google Scholar 

  • Jia J C, Wen C S, Wang G H, Zhang Z L, Wang L J. 2005. New understanding of stratum of **gaze forearc basin in the north of Qiongguo area, Zhongba, Tibet (in Chinese with English abstract). Northwestern Geol, 38: 33–39

    Google Scholar 

  • Jiang T, Aitchison J C, Wan X. 2016. The youngest marine deposits preserved in southern Tibet and disappearance of the Tethyan Ocean. Gondwana Res, 32: 64–75

    Article  Google Scholar 

  • Leary R J, De Celles P G, Quade J, Gehrels G E, Waanders G. 2016. The Liuqu Conglomerate, southern Tibet: Early Miocene basin development related to deformation within the Great Counter Thrust system. Lithosphere, 8: 427–450

    Article  Google Scholar 

  • Leech M L, Singh S, Jain A K, Klemperer S L, Manickavasagam R M. 2005. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett, 234: 83–97

    Article  Google Scholar 

  • Le Fort P. 1975. Himalayas: The collided range. Present knowledge of the continental arc. Am J Sci, 275: 1–44

    Google Scholar 

  • Li G B, Wan X Q. 2003. Eocene microfossils in southern Tibet and the final closing of the Tibetan Tethys (in Chinese with English abstract). J Stratigr, 27: 99–108

    Google Scholar 

  • Li G B, Wan X Q, Liu W C, Liang D, Yun H. 2005. Discovery of Paleogene marine stratum along the southern side of Yarlung-Zangbo suture zone and its implications in tectonics. Sci China Ser D-Earth Sci, 48: 647

    Article  Google Scholar 

  • Li G W, Kohn B, Sandiford M, Xu Z Q, Wei L. 2015. Constraining the age of Liuqu Conglomerate, southern Tibet: Implications for evolution of the India-Asia collision zone. Earth Planet Sci Lett, 426: 259–266

    Article  Google Scholar 

  • Li H S. 2000. The discovery of Paleogene radiolarian rock in South Tibet—A late discovery report. The Proceedings of the Third National Stratigraphical Conference of China (in Chinese). Bei**g: Geological Publishing House. 354–358

    Google Scholar 

  • Li J, Hu X M, Garzanti E, An W, Wang J G. 2015. Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): Stratigraphic response to initial India-Asia continental collision. J Asian Earth Sci, 104: 39–54

    Article  Google Scholar 

  • Li J, Hu X M, Garzanti E, Bou Dagher-Fadel M. 2017. Shallow-water carbonate responses to the Paleocene-Eocene thermal maximum in the Tethyan Himalaya (southern Tibet): Tectonic and climatic implications. Paleogeogr Paleoclimatol Paleoecol, 466: 153–165

    Article  Google Scholar 

  • Li J G, Guo Z, Batten D J, Cai H, Zhang Y. 2010. Palynological stratigraphy of the Late Cretaceous and Cenozoic collision-related conglomerates at Qiabulin, **gaze, **zang (Tibet) and its bearing on palaeoenvironmental development. J Asian Earth Sci, 38: 86–95

    Article  Google Scholar 

  • Li J L, Sun S, Hao J, Chen H H, Hou Q L, **ao W J, Wu J M. 1999. Time limit of collision event of collision orogens (in Chinese with English abstract). Acta Petrol Sin, 15: 315–320

    Google Scholar 

  • Li X H, Wang C S, Hu X M. 2005. Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, China. Cretac Res, 26: 33–41

    Article  Google Scholar 

  • Li X H, Wang C S, Wan X Q. 1999. Verification of stratigraphical sequence and classification of the Chuangde Section of Gyangze, South Tibet (in Chinese with English abstract). J Stratigr, 24: 303–309

    Google Scholar 

  • Li Y L, Wang C S, Hu X M, Bak M, Wang J J, Chen L. 2007. Characteristics of early eocene radiolarian assemblages of the Saga area, southern Tibet and their constraint on the closure history of the Tethys. Chin Sci Bull, 52: 2108–2114

    Article  Google Scholar 

  • Liu G H, Einsele G. 1996. Various types of olistostromes in a closing ocean basin, Tethyan Himalaya (Cretaceous, Tibet). Sediment Geol, 104: 203–226

    Article  Google Scholar 

  • Liu J B, Aitchison J C. 2002. Upper Paleocene radiolarians from the Yamdrok mélange, south **zang (Tibet), China. Micropaleontol, 48 (Suppl): 145–154

    Google Scholar 

  • Liu C, Yin J, Sun X, Sun Y. 1988. Late Cretaceous-early Tertiary marine strata-the nonflysch deposits of the **gaze forearc basin in South **zang (in Chinese with English abstract). Mem Inst Geol Chin Acad Sci, 3: 130–157

    Google Scholar 

  • Mascle G, Pêcher A, Guillot S, Rai S, Gajurel A. 2012. The Himalaya-Tibet Collision. Paris: Nepal Geological Society and Société Géologique de France. 264

    Google Scholar 

  • Mo X X, Zhao Z D, Zhou S D G C, Liao Z L. 2007. On the timing of India-Asia continental collision (in Chinese with English abstract). Geol Bull China, 26: 1240–1244

    Google Scholar 

  • Molnar P, Tapponnier P. 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189: 419–426

    Article  Google Scholar 

  • Molnar P, Tapponnier P. 1977. The collision between India and Eurasia. Sci Am, 236: 30–41

    Article  Google Scholar 

  • Najman Y. 2005. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci Rev, 1–72

    Google Scholar 

  • Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. J Geophys Res, 115: B12416

    Article  Google Scholar 

  • Najman Y, Bickle M, Bou Dagher-Fadel M, Carter A, Garzanti E, Paul M, Wijbrans J, Willett E, Oliver G, Parrish R, Akhter S H, Allen R, Ando S, Chisty E, Reisberg L, Vezzoli G. 2008. The paleogene record of Himalayan erosion: Bengal Basin, Bangladesh. Earth Planet Sci Lett, 273: 1–14

    Article  Google Scholar 

  • Najman Y, Carter A, Oliver G, Garzanti E. 2005. Provenance of Eocene foreland basin sediments, Nepal: Constraints to the timing and diachroneity of early Himalayan orogenesis. Geology, 33: 309–312

    Article  Google Scholar 

  • Najman Y, Garzanti E. 2000. Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geol Soc Am Bull, 112: 435–449

    Article  Google Scholar 

  • Najman Y, Jenks D, Godin L, Boudagher-Fadel M, Millar I, Garzanti E, Horstwood M, Bracciali L. 2017. The Tethyan Himalayan detrital record shows that India-Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth Planet Sci Lett, 459: 301–310

    Article  Google Scholar 

  • Najman Y, Pringle M, Godin L, Oliver G. 2001. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature, 410: 194–197

    Article  Google Scholar 

  • Nicora A, Garzanti E, Fois E. 1987. Evolution of the Tethys Himalaya continental shelf during Maastrichtian to Paleocene (Zanskar, India). Riv Ital Paleontol Stratigr, 92: 439–496

    Google Scholar 

  • Orme D A, Carrapa B, Kapp P. 2015. Sedimentology, provenance and geochronology of the upper Cretaceous-lower Eocene western **gaze forearc basin, southern Tibet. Basin Res, 27: 387–411

    Article  Google Scholar 

  • Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615–621

    Article  Google Scholar 

  • Pigram C J, Davies P J, Feary D A, Symonds P A. 1989. Tectonic controls on carbonate platform evolution in southern Papua New Guinea: Passive margin to foreland basin. Geology, 17: 199–202

    Article  Google Scholar 

  • Powell C M A, Conaghan P J. 1973. Plate tectonics and the Himalayas. Earth Planet Sci Lett, 20: 1–12

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Liu G, Chen C. 1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision. J Geophys Res, 99: 19917–19945

    Article  Google Scholar 

  • Ravikant V, Wu F Y, Ji W Q. 2011. U-Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya. Earth Planet Sci Lett, 304: 356–368

    Article  Google Scholar 

  • Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122

    Article  Google Scholar 

  • Rowley D B. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet Sci Lett, 145: 1–13

    Article  Google Scholar 

  • Savoye B, Babonneau N, Dennielou B, Bez M. 2009. Geological overview of the Angola-Congo margin, the Congo deep-sea fan and its submarine valleys. Deep-Sea Res Part II-Top Stud Oceanogr, 56: 2169–2182

    Article  Google Scholar 

  • Sciunnach D, Garzanti E. 2012. Subsidence history of the Tethys Himalaya. Earth-Sci Rev, 111: 179–198

    Article  Google Scholar 

  • Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Tingdong L, Xuchang X, Jan M Q, Thakur V C, Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull, 98: 678

    Article  Google Scholar 

  • Sinclair H D. 1997. Tectonostratigraphic model for underfilled peripheral foreland basins: An Alpine perspective. Geol Soc Am Bull, 109: 324–346

    Article  Google Scholar 

  • Sinclair H D, Jaffey N. 2001. Sedimentology of the Indus Group, Ladakh, northern India: Implications for the timing of initiation of the palaeo-Indus River. J Geol Soc, 158: 151–162

    Article  Google Scholar 

  • Singh B P. 2003. Evidence of growth fault and forebulge in the Late Paleocene (~57.9–54.7 Ma), western Himalayan foreland basin, India. Earth Planet Sci Lett, 216: 717–724

    Article  Google Scholar 

  • Stebner F, Szadziewski R, Singh H, Gunkel S, Rust J. 2017. Biting Midges (Diptera: Ceratopogonidae) from Cambay Amber Indicate that the Eocene fauna of the Indian subcontinent was not isolated. PLoS ONE, 12: e0169144, doi:10.1371/journal.pone.0169144

    Article  Google Scholar 

  • Stockmal G S, Beaumont C, Boutilier R. 1986. Geodynamic models of convergent margin tectonics: Transition from rifted margin to overthrust belt and consequences for foreland-basin development. AAPG Bull, 70: 181–190

    Google Scholar 

  • St-Onge M, Rayner N, Palin R, Searle M, Waters D. 2013. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): Implications for the burial and exhumation path of UHP units in the western Himalaya. J Metamorph Geol, 31: 469–504

    Article  Google Scholar 

  • Sun G Y, Hu X M, Wang J G. 2011. Petrologic and Provenance Analysis of the Zongzhuo Melange in Baisha Area, Gyangze, Southern Tibet (in Chinese with English abstract). Acta Geol Sin, 85: 1343–1351

    Article  Google Scholar 

  • Tao J. 1988. Plant fossils from the Liuqu Formation in Lhaze County, **zang and their paleoclimatological significances. Memoirs of the Institute of Geology, Chinese Academy of Science (in Chinesewith English abstract). Bei**g: Science Press. 223–238

    Google Scholar 

  • Thewissen J G M, Williams E M, Hussain S T. 2001. Eocene mammal faunas from northern Indo-Pakistan. J Vertebrate Paleontol, 21: 347–366

    Article  Google Scholar 

  • van Hinsbergen D J J, Steinberger B, Doubrovine P V, Gassmoller R. 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J Geophys Res, 116: B06101

    Google Scholar 

  • van Hinsbergen D J J, Lippert P C, Dupont-Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc Natl Acad Sci USA, 109: 7659–7664

    Article  Google Scholar 

  • Wan X, Lamolda M A, Si J, Li G. 2005. Foraminiferal stratigraphy of Late Cretaceous red beds in southern Tibet. Cretac Res, 26: 43–48

    Article  Google Scholar 

  • Wan X. 1987. Foraminifera biostratigraphy and paleogeography of the Tertiary in Tibet (in Chinese with English abstract). Geoscience, 1: 15–47

    Google Scholar 

  • Wan X Q, Ding L. 2001. Latest Cretaceous to Early Eocene marine strata in Zhongba region, Tibet (in Chinese with English abstract). J Stratigr, 25: 267–272

    Google Scholar 

  • Wan X Q, Ding L. 2002. Discovery of the latest Cretaceous planktonic foraminifera from Gyirong of South Tibet and its chronostratigraphic significance (in Chinese with English abstract). Acta Palaeontol Sin, 41: 89–95

    Google Scholar 

  • Wang C S, Li X H, Hu X, Jansa L F. 2002. Latest marine horizon north of Qomolangma (Mt Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14: 114–120

    Article  Google Scholar 

  • Wang C S, Li X H, Hu X M. 2003. Age of initial collision of India with Asia: Review and constraints from sediments in Southern Tibet (in Chinese with English abstract). Acta Geol Sin, 77: 16–24

    Google Scholar 

  • Wang C S, Li X H, Wan X Q, Tao R. 2000. The Cretaceous in Gyangze, Southern **zang (Tibet): Redefined (in Chinese with English abstract). Acta Geol Sin, 4: 97–107

    Google Scholar 

  • Wang J G. 2011. Sedimentary Record and Basin Evolution of the Himalayan Orogen in **gaze Area, Southern Tibet. Doctoral Dissertation (in Chinese with English abstract). Nan**g: Nan**g University

    Google Scholar 

  • Wang J G, Hu X M, Bou Dagher-Fadel M, Wu F Y, Sun G Y. 2015. Early Eocene sedimentary recycling in the Kailas area, southwestern Tibet: Implications for the initial India-Asia collision. Sediment Geol, 315: 1–13

    Article  Google Scholar 

  • Wang J G, Hu X M, Garzanti E, Wu F Y. 2013. Upper Oligocene-Lower Miocene gangrinboche conglomerate in the **gaze Area, Southern Tibet: Implications for Himalayan uplift and Paleo-Yarlung-Zangbo initiation. J Geol, 121: 425–444

    Article  Google Scholar 

  • Wang J G, Hu X M, Jansa L, Huang Z C. 2011. Provenance of the Upper Cretaceous-Eocene Deep-Water sandstones in Sangdanlin, Southern Tibet: Constraints on the timing of initial India-Asia collision. J Geol, 119: 293–309

    Article  Google Scholar 

  • Wang J G, Hu X M, Wu F Y, Jansa L. 2010. Provenance of the Liuqu Conglomerate in southern Tibet: A Paleogene erosional record of the Himalayan-Tibetan orogen. Sediment Geol, 231: 74–84

    Article  Google Scholar 

  • Wang X, Wan X Q, Li G B. 2010. Turnover of larger benthic foraminifera during the Paleocene-Eocene stratigraphic boundary in Gamba, Tibet (in Chinese with English abstract). Acta Microbiol Sin, 27: 109–117

    Google Scholar 

  • Wei L, Liu X, Yan F, Mai X, Zhou X, Li G, Liu X. 2009. Discovery and preliminary study on palynofossils from the Paleogene Liuqu Conglomerates in southern **zang (Tibet) (in Chinese with English abstract). Acta Microbiol Sin, 26: 249–260

    Google Scholar 

  • Wei Y S, Li X H, Wang C S, Cao K. 2006. Provenance analysis of Paleogene Gyachala formation in Southern Tibet: Implication for the initiation of collision between India and Asia (in Chinese with English abstract). J Miner Petrol, 26: 46–55

    Google Scholar 

  • Wen D, Liu D, Chung S, Chu M, Ji J, Zhang Q, Song B, Lee T, Yeh M, Lo C. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol, 252: 191–201

    Article  Google Scholar 

  • White N M, Pringle M, Garzanti E, Bickle M, Najman Y, Chapman H, Friend P. 2002. Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet Sci Lett, 195: 29–44

    Article  Google Scholar 

  • Willems H, Zhang B. 1993a. Cretaceous and Lower Tertiary sediments of the Tibetan Tethys Himalaya in the area of Gamba (South Tibet, PR Chian). Ber Fachbereich Geowis senschaften Univ Bremen, 38: 3–27

    Google Scholar 

  • Willems H, Zhang B. 1993b. Cretaceous and Lower Tertiary sediments of the Tibetan Tethys Himalaya in the area of Tingri (South Tibet, PR China). In: Willems H, ed. Geoscientific Investigations in the Tethyan Himalayas. Ber Fachbereich Geowiss Univ, 38: 29–47

    Google Scholar 

  • Willems H, Zhou Z, Zhang B, Gräfe K U. 1996. Stratigraphy of the upper cretaceous and lower tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol Rundsch, 85: 723–754

    Article  Google Scholar 

  • Wu F Y, Clift P D, Yang J H. 2007. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics, 26: TC2014

    Article  Google Scholar 

  • Wu F Y, Huang B, Ye K, Fang A M. 2008. Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau (in Chinese with English abstract). Acta Petrol Sin, 24: 1–30

    Google Scholar 

  • Wu F Y, Ji W Q, Wang J G, Liu C Z, Chung S L, Clift P D. 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Am J Sci, 314: 548–579

    Article  Google Scholar 

  • Wu F Y, Liu Z C, Liu X C, Ji W Q. 2015. Himalayan leucogranite: Petrogenesis and implications to plateau uplift (in Chinese with English abstract). Acta Petrolo Sin, 31: 1–36

    Google Scholar 

  • Wu H. 1984. The Chongdu Formation-Cretaceous deep sea deposits in southern **zang (Tibet) and its significance (in Chinese with English abstract). Sci Geol Sin, 19: 26–33

    Google Scholar 

  • Yan Z, Fang A M, Pan Y S, Li J L, Liu X H, Yu L J. 2006. Detrital modal, geochemical characteristics and tectonic setting of the Da**marine clastic rocks, Tibet (in Chinese with English abstract). Acta Petrol Sin, 22: 949–960

    Google Scholar 

  • Yan Z, Fang A M, Pan Y S, Li J L, Liu X H, Yu L J, Zhang B G. 2005. Sedimentary environment of the Da** conglomerate in Tibet, age of foraminiferan assemblages and their tectonic significance. Prog Nat Sci, 15: 1014–1020

    Article  Google Scholar 

  • Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 76: 1–131

    Article  Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Article  Google Scholar 

  • Yin J, Sun X, Sun Y, Liu C. 1988. Stratigraphy on the molasse type sediments of the paired molasses belts in the **gaze region, South **zang (in Chinese with English abstract). Mem Inst Geol Chin Acad Sci, 3: 158–176

    Google Scholar 

  • Yu G M, Lan B L, Wang C S. 1984. A brief discussion on the Cretaceous deep-sea olistostrome and turbidite sedimentation in Gyangze, **zang (in Chinese with English abstract). Proc Qinghai-Tibet Plateau Geol. 13–26

    Google Scholar 

  • Yu G M, Wang C S. 1990. Sedimentary Geology of Tethys in Tibet (in Chinese with English abstract). Bei**g: Geological Publishing House

    Google Scholar 

  • Zhang Q, Willems H, Ding L, Gräfe K U, Appel E. 2012. Initial India-Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: Evidence from stratigraphy and paleontology. J Geol, 120: 175–189

    Article  Google Scholar 

  • Zhu D C, Pan G T, Mo X X, Duan L P, Liao Z L. 2004. The age of collision between India and Eurasia. Adv Earth Sci, 19: 564–571

    Google Scholar 

  • Zhu D C, Wang Q, Zhao Z D. 2017. Quantitatively constraining the timing and process of continent-continent collision using magmatic record: Methods and examples. Sci China Earth Sci, this issue

  • Zhu D C, Wang Q, Zhao Z D, Chung S L, Cawood P A, Niu Y, Liu S A, Wu F Y, Mo X X. 2015. Magmatic record of India-Asia collision. Sci Rep, 5: 14289

    Article  Google Scholar 

  • Zhu D C, Zhao Z D, Niu Y, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 301: 241–255

    Article  Google Scholar 

  • Zhuang G, Najman Y, Guillot S, Roddaz M, Antoine P O, Métais G, Carter A, Marivaux L, Solangi S H. 2015. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth Planet Sci Lett, 432: 363–373

    Article  Google Scholar 

Download references

Acknowledgements

Our studies over the past years have benefited from discussions and communications with many colleagues, including Fabrizio Berra, Marcelle BouDagher-Fadel, ** Chen, Sunlin Chung, **gen Dai, Lin Ding, Wentao Huang, Flavio Jadoul, Luba Jansa, **anghui Li, Ted Moore, Yani Najman, Alda Nicora, Isabella Raffi, Dario Sciunnach, Hugh Sinclair, Chengshan Wang, Qiang Wang, Alexander Webb, Fuyuan Wu, and Dicheng Zhu. Several students participated actively in our Himalayan research, including Lei Chen, Ronghua Guo, Zhong Han, Hehe Jiang, Gaoyuan Sun, and Bo Zhou. The suggestions and advice received from colleagues and friends has contributed notably to this review article. We especially thank the Academician of the Chinese Academy of Sciences, Fuyuan Wu, for inviting us to write this article. This paper was supported by the National Natural Science Foundation of China (Grant No. 41525007), the Stratigraphic Pilot Science and Technology Projects of the Chinese Academy of Sciences (Class B) (Grant No. XDB03010400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **uMian Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Wang, J., An, W. et al. Constraining the timing of the India-Asia continental collision by the sedimentary record. Sci. China Earth Sci. 60, 603–625 (2017). https://doi.org/10.1007/s11430-016-9003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9003-6

Keywords

Navigation