Log in

Interpretation of the experimental data provided by Gómez-Rivas and Griera (2012) in terms of the MEM-criterion

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The systematical experiments carried out by Gómez-Rivas and Griera (2012) demonstrate that the ductile shear zones initiate at ∼55° to σ1 just as predicted by the MEM-criterion. However, the data are explained in terms of dilatancy, which requires many prerequisites and implies that the ±55° angle is only valid for the used material. In contrast, the ∼55° predicted by the MEM-criterion is material independent, which makes it widely applicable to explaining the development of ductile shear zones in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson T B. 1964. Kink-band and related geological structures. Nature, 202: 272–274

    Article  Google Scholar 

  • Becker G F. 1893. Finite homogeneous strain, flow and rupture of rocks. Geol Soc Amer Bull, 4: 13–19

    Google Scholar 

  • Camerlo R H, Benson E F. 2006. Geometric and seismic interpretation of the Perdido fold belt: Northwestern deep-water Gulf of Mexico. APG Bull, 90: 363–386

    Article  Google Scholar 

  • Cosgrove J W. 1976. The formation of crenulation cleavage. J Geol Soc Lond, 132: 155–178

    Article  Google Scholar 

  • Fagereng A. 2012. On stress and strain in a continuous-discontinuous shear zone undergoing simple shear and volume loss. J Struct Geol, doi:10.1016/j.jsg.2012.02.016

    Google Scholar 

  • Fowler A, Osman A F. 2009. The Sha’it-Nugrus shear zone separating central and south eastern deserts, Egypt: A post-arc collision low-angle normal ductile shear zone. J Afr Earth Sci, 52: 16–32

    Article  Google Scholar 

  • Gómez-Rivas E. 2008. Localización de deformación en mediosdúctiles y anisótropos: Studio de campo, experimental y numérico. Tesis doctoral, Universitat Autònoma de Barceloma (http://www.tesisenxarxa.net/TDX-1120108-151236/)

    Google Scholar 

  • Gómez-Rivas E, Griera A. 2012. Shear fractures in anisotropic ductile materials: An experimental approach. J Struct Geol, 34: 61–76

    Article  Google Scholar 

  • Guo Z J, Shi H Y, Zhang Z C, et al. 2006. The tectonic evolution of south Tianshan paleo-oceanic crust inferred from the spreading structures and Ar-Ar dating of the Hongliuhe ophiolites, NW China. Acta Petrol Sin, 22: 95–102

    Google Scholar 

  • Harris L B, Cobbold P R. 1985. Development of conjugate shear bands during bulk simple shearing. J Struct Geol, 7: 37–44

    Article  Google Scholar 

  • Hill R. 1950. The Mathematical Theory of Plasticity. Oxford: Oxford University Press/Clarendon Press

    Google Scholar 

  • Hubert-Ferrari A, King G, Manighetti I, et al. 2003. Long-term elasticity in the continental lithosphere: modeling the Aden Ridge propagation and the Anatolian extrusion process. Geophys J Inter, 153: 111–132

    Article  Google Scholar 

  • King D C, Klepeis K A, Goldstein A G, et al. 2008. The initiation and evolution of the transpressional Straight River shear zone, central Fiord-land, New Zealand. J Struct Geol, 30: 410–430

    Article  Google Scholar 

  • Law R D, Knipe R J, Dayan H. 1984. Strain path partitioning within thrust sheets: Microstructural and petrofabric evidence from the Moine Thrust zone at Loch Eriboll, northwest Scotland. J Struct Geol, 6: 497–430

    Article  Google Scholar 

  • Marshak S, Alkmim F F, Whittington A, et al. 2006. Extensional collapse in the Neoproterozoic Aracuai orogen, eastern Brazil: A setting for reactivation of asymmetric crenulation cleavage. J Struct Geol, 28: 129–147

    Article  Google Scholar 

  • Neves S P, de Silva J M R, Mariano G. 2005. Oblique lineations in orthogneisses and supracrustal rocks: Vertical partitioning of strain in a hot crust (eastern Borborema Province, NE Brazil). J Struct Geol, 27: 1513–1527

    Article  Google Scholar 

  • Passchier C W, Trouw R A L. 2005. Microtectonics, Second Corrected Reprint. Berlin: Springer-Verlag. 289

    Google Scholar 

  • Paterson M S, Weiss L E. 2005. Experimental deformation and folding in phyllite. Geol Soc Amer Bull, 77: 343–374

    Article  Google Scholar 

  • Platt J P. 1984. Secondary cleavages in ductile shear zones. J Struct Geol, 6: 439–442

    Article  Google Scholar 

  • Ramsay J G. 1980. Shear zone geometry: A review. J Struct Geol, 2: 83–99

    Article  Google Scholar 

  • Ramsay J G. 1984. The geometry of conjugate fold system. Geology, 99: 516–528

    Google Scholar 

  • Ramsay J G, Huber M I. 1987. The Techniques of Modern Structural Geology Fractures. Vol. 2: Folds and Fractures. New York: Academic Press

    Google Scholar 

  • Simpson C, De Paor D G. 1993. Strain and kinematic analysis in general shear zone. J Struct Geol, 15: 1–20

    Article  Google Scholar 

  • Sun W D, Li S, Yang X Y, et al. 2013. Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions. Inter Geol Rev, 55: 311–321

    Article  Google Scholar 

  • Tapponnier P, Molnar P. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264: 319–324

    Article  Google Scholar 

  • Teyssier C, Tikoff B, Markley C. 1995. Oblique plate motion and continental tectonics. Geology, 22: 447–450

    Article  Google Scholar 

  • Tikoff B, Teyssier C. 1994. Strain modeling of displacement-field partitioning in transpressional orogens. J Struct Geol, 16: 1575–1588

    Article  Google Scholar 

  • Wadee M A, Edmunds R. 2005. Kink band propagation in layered structures. J Mech Phys Solid, 53: 2017–2035

    Article  Google Scholar 

  • Watterson J. 1999. The future of failure: Stress or strain? J Struct Geol, 21: 939–948

    Article  Google Scholar 

  • White S H. 1979. Large strain deformation: Report on a Tectonic Studies Group Discussing Meeting Held at Imperial College, London on 14 November 1979. J Struct Geol, 1: 333–339

    Article  Google Scholar 

  • White S H, Burrows S E, Carreras J, et al. 1980. On mylonites in ductile shear zones. J Struct Geol, 2: 175–187

    Article  Google Scholar 

  • Yan S Y, Zhang J J, Zhang B, et al. 2011. Physical modeling for kink-bands in the Bachu uplift belt in Tarim Basin, China (in Chinese). Geotect Metal, 35: 24–31

    Google Scholar 

  • Yang T N, Wang Y, Li J Y, et al. 2007. Vertical and horizontal strain partitioning of the central Tianshan (NW China): Evidence from structures and 40Ar/39Ar geochronology. J Struct Geol, 29:1605–1621

    Article  Google Scholar 

  • Zhang B, Zhang J J, Zhong D. 2010. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. J Struct Geol, 32: 445–463

    Article  Google Scholar 

  • Zheng Y D, Wang T, Wang X S. 2006. The maximum effective moment criterion (MEMC) and its implications in structural geology. Acta Geol Sin, 80: 70–78

    Article  Google Scholar 

  • Zheng Y D, Wang T, Zhang J J. 2011. Puzzles and the maximum effective moment (MEM) criterion in structural geology. J Struct Geol, 35: 1394–1405

    Google Scholar 

  • Zheng Y D, Zhang J J, Wang T. 2012. Reply to comment and some questions on “Puzzles and the maximum-effective-moment (MEM) criterion in structural geology”. J Struct Geol, 36: 85–87

    Article  Google Scholar 

  • Zheng Y, Wang T, Ma M, et al. 2004 Maximum effective moment criterion and the origin of low-angle normal faults. J Struct Geol, 26: 271–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaDong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhang, J. & Wang, T. Interpretation of the experimental data provided by Gómez-Rivas and Griera (2012) in terms of the MEM-criterion. Sci. China Earth Sci. 57, 2819–2824 (2014). https://doi.org/10.1007/s11430-014-4972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4972-7

Keywords

Navigation