Log in

(Über‑)Ernährung und Einfluss auf die Funktion der Plazenta

Veränderungen im maternofetalen Austausch bei Adipositas und Gestationsdiabetes

(Over‑)Nutrition and its impact on placenta function

Changes in maternal–fetal exchange in obesity and gestational diabetes

  • Leitthema
  • Published:
Die Diabetologie Aims and scope

Zusammenfassung

Für eine optimale Entwicklung des Fetus ist ein adäquater Austausch von Nährstoffen über die Plazenta unabdingbar. Die Schwangerschaft stellt ein höchst sensitives Zeitfenster dar, in dem Fehlernährung, Adipositas sowie damit einhergehende Stoffwechselveränderungen wie Diabetes mellitus die fetale und kindliche Gesundheit lebenslang prägen können. Eine entscheidende Rolle in diesem Kontext übernimmt die Plazenta, welche als erstes maternofetales Kontaktorgan zum einen die durch mütterliches Übergewicht/Adipositas und/oder Gestationsdiabetes veränderten Nährstoffe an den Fetus weitergibt, zum anderen auf in diesem Zusammenhang veränderte Nährstofftransportmechanismen zurückgreifen muss. Der kindliche Organismus wird durch diese unphysiologischen Bedingungen geprägt. Eine solche Fehlprogrammierung der kindlichen Organfunktionen und Stoffwechselregulationen stellt die Basis für sich später bei den Nachkommen entwickelnde chronische Krankheiten dar wie Adipositas, Diabetes mellitus oder kardiovaskuläre Erkrankungen. In diesem Beitrag wird ein aktueller Überblick über Ernährungsempfehlungen in der Schwangerschaft, Funktion und Nährstofftransport in der Plazenta, maternofetale Transportprozesse sowie Aspekte der plazentaren immunologischen Prozesse gegeben – stets mit speziellem Fokus auf Veränderungen bei Gestationsdiabetes und Adipositas.

Abstract

An adequate exchange of nutrients via the placenta is of particular importance for optimal growth of an unborn fetus. Therefore, pregnancy represents a highly sensitive time frame where an inadequate or unbalanced diet together with overweight/obesity or related metabolic conditions such as gestational diabetes can impact infant health for life. Of particular importance is the placenta as the first fetal–maternal contact organ. Both nutrient availability and placental nutrient transporters are characterized by the obesogenic/diabetic phenotype of the mother and impact fetal development. Disturbed fetal programming of organ function and metabolic processes will increase the risk for later development of chronic diseases such as obesity, type 2 diabetes or cardiovascular disease. In this review, current dietary guidelines during pregnancy, function and nutrient transport in the placenta, fetal–maternal exchange, and aspects involving placental immunological pathways are presented with a particular focus on changes induced by obesity and/or gestational diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bandres-Meriz J, Dieberger AM, Hoch D et al (2020) Maternal obesity affects the glucose-insulin axis during the first trimester of human pregnancy. Front Endocrinol (lausanne) 11:566673

    PubMed  Google Scholar 

  2. Bandres-Meriz J, Majali-Martinez A, Hoch D et al (2021) Maternal C‑peptide and insulin sensitivity, but not BMI, associate with fatty acids in the first trimester of pregnancy. Int J Mol Sci 22(19):10422. https://doi.org/10.3390/ijms221910422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Battaglia FC (1989) An update of fetal and placental metabolism: carbohydrate and amino acids. Biol Neonate 55:347–354

    CAS  PubMed  Google Scholar 

  4. Berry ASF, Pierdon MK, Misic AM et al (2021) Remodeling of the maternal gut microbiome during pregnancy is shaped by parity. Microbiome 9:146

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bianchi DW (2004) Circulating fetal DNA: its origin and diagnostic potential—a review. Placenta Suppl A:S93–S101

    Google Scholar 

  6. Braga A, Neves E, Guimaraes J et al (2022) Th17/Regulatory T cells ratio evolution: A prospective study in a group of healthy pregnant women. J Reprod Immunol 149:103468

    CAS  PubMed  Google Scholar 

  7. Brett KE, Ferraro ZM, Yockell-Lelievre J et al (2014) Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta. Int J Mol Sci 15:16153–16185

    PubMed  PubMed Central  Google Scholar 

  8. Burton GJ, Cindrova-Davies T, Turco MY (2020) Review: Histotrophic nutrition and the placental—endometrial dialogue during human early pregnancy. Placenta 102:21–26

    CAS  PubMed  Google Scholar 

  9. Busse M, Campe KJ, Nowak D et al (2019) IL-10 producing B cells rescue mouse fetuses from inflammation-driven fetal death and are able to modulate T cell immune responses. Sci Rep 9:9335

    PubMed  PubMed Central  Google Scholar 

  10. Busse M, Campe KJ, Redlich A et al (2020) Regulatory B cells are decreased and impaired in their function in peripheral maternal blood in pre-term birth. Front Immunol 11:386

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Carrasco-Wong I, Moller A, Giachini FR et al (2020) Placental structure in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 1866:165535

    CAS  PubMed  Google Scholar 

  12. Cervar M, Blaschitz A, Dohr G et al (1999) Paracrine regulation of distinct trophoblast functions in vitro by placental macrophages. Cell Tissue Res 295:297–305

    CAS  PubMed  Google Scholar 

  13. Challier JC, Basu S, Bintein T et al (2008) Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 29:274–281

    CAS  PubMed  PubMed Central  Google Scholar 

  14. American Diabetes Association Professional Practice Committee, Draznin B, Aroda VR, Bakris G et al (2021) 15. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes 2022. Diabetes Care 45:S232–S243

    Google Scholar 

  15. Davidson SJ, Barrett HL, Price SA et al (2021) Probiotics for preventing gestational diabetes. Cochrane Database Syst Rev 4:CD9951

    PubMed  Google Scholar 

  16. Desoye G (2018) The human placenta in diabetes and obesity: friend or foe? The 2017 Norbert Freinkel award lecture. Diabetes Care 41:1362–1369

    PubMed  Google Scholar 

  17. Desoye G, Carter AM (2022) Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity. Nat Rev Endocrinol 18:593–607

    CAS  PubMed  Google Scholar 

  18. Desoye G, Cervar-Zivkovic M (2020) Diabetes mellitus, obesity, and the placenta. Obstet Gynecol Clin North Am 47:65–79

    PubMed  Google Scholar 

  19. Desoye G, Herrera E (2021) Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Prog Lipid Res 81:101082

    CAS  PubMed  Google Scholar 

  20. Desoye G, Nolan CJ (2016) The fetal glucose steal: an underappreciated phenomenon in diabetic pregnancy. Diabetologia 59:1089–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Desoye G, Shafrir E (1994) Placental metabolism and its regulation in health and diabetes. Mol Aspects Med 15:505–682

    CAS  PubMed  Google Scholar 

  22. Desoye G, Wells JCK (2021) Pregnancies in diabetes and obesity: the capacity-load model of placental adaptation. Diabetes 70:823–830

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), Schweizerische Gesellschaft für Ernährung (SGE) (Hrsg) (2019) Referenzwerte für die Nährstoffzufuhr, 2. Aufl. Bonn (5. aktualisierte Ausgabe)

  24. Faas MM, De Vos P (2017) Uterine NK cells and macrophages in pregnancy. Placenta 56:44–52

    CAS  PubMed  Google Scholar 

  25. Fettke F, Schumacher A, Canellada A et al (2016) Maternal and fetal mechanisms of B cell regulation during pregnancy: human Chorionic Gonadotropin stimulates B cells to produce IL-10 while Alpha-Fetoprotein drives them into Apoptosis. Front Immunol 7:495

    PubMed  PubMed Central  Google Scholar 

  26. Figueiredo AS, Schumacher A (2016) The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology 148:13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaccioli F, Lager S (2016) Placental nutrient transport and intrauterine growth restriction. Front Physiol 7:40

    PubMed  PubMed Central  Google Scholar 

  28. Ganal-Vonarburg SC, Fuhrer T, Gomez De Aguero M (2017) Maternal microbiota and antibodies as advocates of neonatal health. Gut Microbes 8:479–485

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Institut für Qualität und transparenz im Gesundheitswesen (IQTiG) (2022) Länderbericht Perinatalmedizin: Geburtshilfe. Erfassungsjahr 2021. DEQS_PM-GEBH_2021_LAW_ba_2022-06-30.pdf.

  30. Gil-Sanchez A, Koletzko B, Larque E (2012) Current understanding of placental fatty acid transport. Curr Opin Clin Nutr Metab Care 15:265–272

    CAS  PubMed  Google Scholar 

  31. Gomez De Aguero M, Ganal-Vonarburg SC, Fuhrer T et al (2016) The maternal microbiota drives early postnatal innate immune development. Science 351:1296–1302

    PubMed  Google Scholar 

  32. Hellmuth C, Lindsay KL, Uhl O et al (2017) Association of maternal prepregnancy BMI with metabolomic profile across gestation. Int J Obes (lond) 41:159–169

    CAS  PubMed  Google Scholar 

  33. Herrera E, Desoye G (2016) Maternal and fetal lipid metabolism under normal and gestational diabetic conditions. Horm Mol Biol Clin Investig 26:109–127

    CAS  PubMed  Google Scholar 

  34. Hirschmugl B, Perazzolo S, Sengers BG et al (2021) Placental mobilization of free fatty acids contributes to altered materno-fetal transfer in obesity. Int J Obes (lond) 45:1114–1123

    CAS  PubMed  Google Scholar 

  35. Illsley NP, Baumann MU (2020) Human placental glucose transport in fetoplacental growth and metabolism. Biochim Biophys Acta Mol Basis Dis 1866:165359

    CAS  PubMed  Google Scholar 

  36. Imai A, Fujimoto E, Tamura K et al (2019) A maternal high-fat diet may accelerate adipo-immunologic aging in offspring. Life Sci 219:100–108

    CAS  PubMed  Google Scholar 

  37. Jansson N, Rosario FJ, Gaccioli F et al (2013) Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab 98:105–113

    CAS  PubMed  Google Scholar 

  38. Junge KM, Bauer T, Geissler S et al (2016) Increased vitamin D levels at birth and in early infancy increase offspring allergy risk-evidence for involvement of epigenetic mechanisms. J Allergy Clin Immunol 137:610–613

    CAS  PubMed  Google Scholar 

  39. Junge KM, Leppert B, Jahreis S et al (2018) MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development. Clin Epigenetics 10:58

    PubMed  PubMed Central  Google Scholar 

  40. Kelly AC, Powell TL, Jansson T (2020) Placental function in maternal obesity. Clin Sci (lond) 134:961–984

    CAS  PubMed  Google Scholar 

  41. Kermack AJ, Finn-Sell S, Cheong YC et al (2015) Amino acid composition of human uterine fluid: association with age, lifestyle and gynaecological pathology. Hum Reprod 30:917–924

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Krause JL, Engelmann B, Nunes Da Rocha U et al (2022) MAIT cell activation is reduced by direct and microbiota-mediated exposure to bisphenols. Environ Int 158:106985

    CAS  PubMed  Google Scholar 

  43. Leppert B, Junge KM, Roder S et al (2018) Early maternal perceived stress and children’s BMI: longitudinal impact and influencing factors. Bmc Public Health 18:1211

    PubMed  PubMed Central  Google Scholar 

  44. Leppert B, Strunz S, Seiwert B et al (2020) Maternal paraben exposure triggers childhood overweight development. Nat Commun 11:561

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lindsay KL, Hellmuth C, Uhl O et al (2015) Longitudinal metabolomic profiling of amino acids and lipids across healthy pregnancy. PLoS ONE 10:e145794

    PubMed  PubMed Central  Google Scholar 

  46. Margni RA, Zenclussen AC (2001) During pregnancy, in the context of a Th2-type cytokine profile, serum IL‑6 levels might condition the quality of the synthesized antibodies. Am J Reprod Immunol 46:181–187

    CAS  PubMed  Google Scholar 

  47. Medawar PB (1953) Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol 7:320–338

    Google Scholar 

  48. Mijatovic-Vukas J, Capling L, Cheng S et al (2018) Associations of diet and physical activity with risk for gestational diabetes mellitus: a systematic review and meta-analysis. Nutrients 10(6):698. https://doi.org/10.3390/nu10060698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mor G, Aldo P, Alvero AB (2017) The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol 17:469–482

    CAS  PubMed  Google Scholar 

  50. Nakajima A, Kaga N, Nakanishi Y et al (2017) Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J Immunol 199:3516–3524

    CAS  PubMed  Google Scholar 

  51. Ning F, Liu H, Lash GE (2016) The role of decidual Macrophages during normal and pathological pregnancy. Am J Reprod Immunol 75:298–309

    PubMed  Google Scholar 

  52. Poloski E, Oettel A, Ehrentraut S et al (2016) JEG‑3 Trophoblast cells producing human Chorionic Gonadotropin promote conversion of human CD4+FOXP3- T cells into CD4+FOXP3+ regulatory T cells and foster T cell suppressive activity. Biol Reprod 94:106

    PubMed  Google Scholar 

  53. E‑Lacerda RR, Teixeira CJ, Bordin S et al (2019) Maternal obesity in mice exacerbates the allergic inflammatory response in the airways of male offspring. Nutrients 11(12):2902. https://doi.org/10.3390/nu11122902

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rasmussen KM, Yaktine AL (2009) Weight gain during pregnancy: reexamining the guidelines Washington (DC)

  55. Rasmussen L, Poulsen CW, Kampmann U et al (2020) Diet and healthy lifestyle in the management of gestational diabetes mellitus. Nutrients 12(10):3050. https://doi.org/10.3390/nu12103050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rogers LM, Serezani CH, Eastman AJ et al (2020) Palmitate induces apoptotic cell death and inflammasome activation in human placental macrophages. Placenta 90:45–51

    CAS  PubMed  Google Scholar 

  57. Rolle L, Memarzadeh Tehran M, Morell-Garcia A et al (2013) Cutting edge: IL-10-producing regulatory B cells in early human pregnancy. Am J Reprod Immunol 70:448–453

    CAS  PubMed  Google Scholar 

  58. Schliefsteiner C, Hirschmugl B, Kopp S et al (2017) Maternal gestational diabetes mellitus increases placental and foetal lipoprotein-associated Phospholipase A2 which might exert protective functions against oxidative stress. Sci Rep 7:12628

    PubMed  PubMed Central  Google Scholar 

  59. Schliefsteiner C, Peinhaupt M, Kopp S et al (2017) Human placental Hofbauer cells maintain an anti-inflammatory M2 phenotype despite the presence of gestational diabetes mellitus. Front Immunol 8:888

    PubMed  PubMed Central  Google Scholar 

  60. Schmorl G (1893) Pathologisch-anatomische Untersuchungen über Puerperal-Eklampsie. F.C.W. Vogel, Leipzig

    Google Scholar 

  61. Schumacher A, Sharkey DJ, Robertson SA et al (2018) Immune cells at the fetomaternal interface: how the microenvironment modulates immune cells to foster fetal development. J Immunol 201:325–334

    CAS  PubMed  Google Scholar 

  62. Segura MT, Demmelmair H, Krauss-Etschmann S et al (2017) Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition. Placenta 57:144–151

    CAS  PubMed  Google Scholar 

  63. Simmons D (2019) GDM and nutrition-answered and unanswered questions-there’s more work to do! Nutrients 11(8):1940. https://doi.org/10.3390/nu11081940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sosenko IR, Kitzmiller JL, Loo SW et al (1979) The infant of the diabetic mother: correlation of increased cord C‑peptide levels with macrosomia and hypoglycemia. N Engl J Med 301:859–862

    CAS  PubMed  Google Scholar 

  65. Vaughan OR, Rosario FJ, Powell TL et al (2017) Regulation of placental amino acid transport and fetal growth. Prog Mol Biol Transl Sci 145:217–251

    CAS  PubMed  Google Scholar 

  66. Workalemahu T, Grantz KL, Grewal J et al (2018) Genetic and environmental influences on fetal growth vary during sensitive periods in pregnancy. Sci Rep 8:7274

    PubMed  PubMed Central  Google Scholar 

  67. Zakaria ZZ, Al-Rumaihi S, Al-Absi RS et al (2022) Physiological changes and interactions between microbiome and the host during pregnancy. Front Cell Infect Microbiol 12:824925

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zenclussen AC, Gerlof K, Zenclussen ML et al (2005) Abnormal T‑cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol 166:811–822

    PubMed  PubMed Central  Google Scholar 

  69. Zulu MZ, Martinez FO, Gordon S et al (2019) The elusive role of placental Macrophages: the Hofbauer cell. J Innate Immun 11:447–456

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kristin M. Junge or Gernot Desoye.

Ethics declarations

Interessenkonflikt

K. Junge, A.C. Zenclussen und G. Desoye geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junge, K.M., Zenclussen, A.C. & Desoye, G. (Über‑)Ernährung und Einfluss auf die Funktion der Plazenta. Diabetologie 19, 747–757 (2023). https://doi.org/10.1007/s11428-023-01087-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-023-01087-4

Schlüsselwörter

Keywords

Navigation