Log in

TBC1D1 is an energy-responsive polarization regulator of macrophages via governing ROS production in obesity

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Energy status is linked to the production of reactive oxygen species (ROS) in macrophages, which is elevated in obesity. However, it is unclear how ROS production is upregulated in macrophages in response to energy overload for mediating the development of obesity. Here, we show that the Rab-GTPase activating protein (RabGAP) TBC1D1, a substrate of the energy sensor AMP-activated protein kinase (AMPK), is a critical regulator of macrophage ROS production and consequent adipose inflammation for obesity development. TBC1D1 deletion decreases, whereas an energy overload-mimetic non-phosphorylatable TBC1D1S231A mutation increases, ROS production and M1-like polarization in macrophages. Mechanistically, TBC1D1 and its downstream target Rab8a form an energy-responsive complex with NOX2 for ROS generation. Transplantation of TBC1D1S231A bone marrow aggravates diet-induced obesity whereas treatment with an ultra-stable TtSOD for removal of ROS selectively in macrophages alleviates both TBC1D1S231A mutation- and diet-induced obesity. Our findings therefore have implications for drug discovery to combat obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Burtenshaw, D., Hakimjavadi, R., Redmond, E., and Cahill, P. (2017). Nox, reactive oxygen species and regulation of vascular cell fate. Antioxidants 6, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chadt, A., Leicht, K., Deshmukh, A., Jiang, L.Q., Scherneck, S., Bernhardt, U., Dreja, T., Vogel, H., Schmolz, K., Kluge, R., et al. (2008). Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat Genet 40, 1354–1359.

    Article  CAS  PubMed  Google Scholar 

  • Chavez, J.A., Roach, W.G., Keller, S.R., Lane, W.S., and Lienhard, G.E. (2008). Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J Biol Chem 283, 9187–9195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla, A., Nguyen, K.D., and Goh, Y.P.S. (2011). Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 11, 738–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Chen, Q., **e, B., Quan, C., Sheng, Y., Zhu, S., Rong, P., Zhou, S., Sakamoto, K., MacKintosh, C., et al. (2016). Disruption of the AMPK–TBC1D1 nexus increases lipogenic gene expression and causes obesity in mice via promoting IGF1 secretion. Proc Natl Acad Sci USA 113, 7219–7224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Q., Quan, C., **e, B., Chen, L., Zhou, S., Toth, R., Campbell, D.G., Lu, S., Shirakawa, R., Horiuchi, H., et al. (2014). GARNL1, a major RalGAP α subunit in skeletal muscle, regulates insulin-stimulated RalA activation and GLUT4 trafficking via interaction with 14-3-3 proteins. Cell Signal 26, 1636–1648.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., Rong, P., Xu, D., Zhu, S., Chen, L., **e, B., Du, Q., Quan, C., Sheng, Y., Zhao, T.J., et al. (2017a). Rab8a deficiency in skeletal muscle causes hyperlipidemia and hepatosteatosis by impairing muscle lipid uptake and storage. Diabetes 66, 2387–2399.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., **e, B., Zhu, S., Rong, P., Sheng, Y., Ducommun, S., Chen, L., Quan, C., Li, M., Sakamoto, K., et al. (2017b). A Tbc1d1 Ser231Ala-knockin mutation partially impairs AICAR- but not exercise-induced muscle glucose uptake in mice. Diabetologia 60, 336–345.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Murphy, J., Toth, R., Campbell, D.G., Morrice, N.A., and Mackintosh, C. (2008). Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem J 409, 449–459.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z.Y., Sun, Y.T., Wang, Z.M., Hong, J., Xu, M., Zhang, F.T., Zhou, X.Q., Rong, P., Wang, Q., Wang, H.Y., et al. (2022). Rab2A regulates the progression of nonalcoholic fatty liver disease downstream of AMPK-TBC1D1 axis by stabilizing PPARγ. PLoS Biol 20, e3001522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R., and Förster, I. (1999). Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8, 265–277.

    Article  CAS  PubMed  Google Scholar 

  • Costford, S.R., Castro-Alves, J., Chan, K.L., Bailey, L.J., Woo, M., Belsham, D.D., Brumell, J.H., and Klip, A. (2014). Mice lacking NOX2 are hyperphagic and store fat preferentially in the liver. Am J Physiol-Endocrinol Metab 306, E1341–E1353.

    Article  CAS  PubMed  Google Scholar 

  • Dokas, J., Chadt, A., Nolden, T., Himmelbauer, H., Zierath, J.R., Joost, H.G., and Al-Hasani, H. (2013). Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology 154, 3502–3514.

    Article  CAS  PubMed  Google Scholar 

  • Ducommun, S., Wang, H.Y., Sakamoto, K., MacKintosh, C., and Chen, S. (2012). Thr649 Ala-AS160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle. Am J Physiol-Endocrinol Metab 302, E1036–E1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galic, S., Fullerton, M.D., Schertzer, J.D., Sikkema, S., Marcinko, K., Walkley, C.R., Izon, D., Honeyman, J., Chen, Z.P., van Denderen, B.J., et al. (2011). Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 121, 4903–4915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, C.Z., Juncadella, I.J., Kinchen, J.M., Buckley, M.W., Klibanov, A.L., Dryden, K., Onengut-Gumuscu, S., Erdbrügger, U., Turner, S.D., Shim, Y.M., et al. (2016). Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature 539, 570–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotamisligil, G.S. (2017). Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, T., Kaneko, Y., Yamada, S., Ishihara, H., Senda, T., Iwamatsu, A., and Niki, I. (2008). The GDP-dependent Rab27a effector coronin 3 controls endocytosis of secretory membrane in insulin-secreting cell lines. J Cell Sci 121, 3092–3098.

    Article  CAS  PubMed  Google Scholar 

  • Lian, H., Jiang, K., Tong, M., Chen, Z., Liu, X., Galán, J.E., and Gao, X. (2021). The Salmonella effector protein SopD targets Rab8 to positively and negatively modulate the inflammatory response. Nat Microbiol 6, 658–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117, 175–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, L., Wall, A.A., Yeo, J.C., Condon, N.D., Norwood, S.J., Schoenwaelder, S., Chen, K.W., Jackson, S., Jenkins, B.J., Hartland, E.L., et al. (2014). Rab8a interacts directly with PI3Kγ to modulate TLR4-driven PI3K and mTOR signalling. Nat Commun 5, 4407.

    Article  CAS  PubMed  Google Scholar 

  • Meyre, D., Farge, M., Lecoeur, C., Proenca, C., Durand, E., Allegaert, F., Tichet, J., Marre, M., Balkau, B., Weill, J., et al. (2008). R125W coding variant in TBC1D1 confers risk for familial obesity and contributes to linkage on chromosome 4p14 in the French population. Hum Mol Genet 17, 1798–1802.

    Article  CAS  PubMed  Google Scholar 

  • Nassif, R.M., Chalhoub, E., Chedid, P., Hurtado-Nedelec, M., Raya, E., Dang, P.M.C., Marie, J.C., and El-Benna, J. (2022). Metformin inhibits ROS production by human M2 macrophages via the activation of AMPK. Biomedicines 10, 319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang, Q., Chen, Q., Ke, S., Ding, L., Yang, X., Rong, P., Feng, W., Cao, Y., Wang, Q., Li, M., et al. (2023). Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle. Dev Cell 58, 289–305.e6.

    Article  CAS  PubMed  Google Scholar 

  • Peck, G.R., Chavez, J.A., Roach, W.G., Budnik, B.A., Lane, W.S., Karlsson, H.K.R., Zierath, J.R., and Lienhard, G.E. (2009). Insulin-stimulated phosphorylation of the Rab GTPase-activating protein TBC1D1 regulates GLUT4 translocation. J Biol Chem 284, 30016–30023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pep**, J.K., Vandanmagsar, B., Fernandez-Kim, S.O., Zhang, J., Mynatt, R.L., Bruce-Keller, A.J., and Chowen, J.A. (2017). Myeloid-specific deletion of NOX2 prevents the metabolic and neurologic consequences of high fat diet. PLoS One 12, e0181500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Torres, I., Castrejón-Téllez, V., Soto, M.E., Rubio-Ruiz, M.E., Manzano-Pech, L., and Guarner-Lans, V. (2021). Oxidative stress, plant natural antioxidants, and obesity. Int J Mol Sci 22, 1786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rendra, E., Riabov, V., Mossel, D.M., Sevastyanova, T., Harmsen, M.C., and Kzhyshkowska, J. (2019). Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224, 242–253.

    Article  CAS  PubMed  Google Scholar 

  • Roach, W.G., Chavez, J.A., Mîinea, C.P., and Lienhard, G.E. (2007). Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. Biochem J 403, 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, H.M., Grant, M.M., Hubber, N., Super, P., Singhal, R., and Chapple, I.L.C. (2018). Impact of bariatric surgical intervention on peripheral blood neutrophil (PBN) function in obesity. Obes Surg 28, 1611–1621.

    Article  PubMed  Google Scholar 

  • Sag, D., Carling, D., Stout, R.D., and Suttles, J. (2008). Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181, 8633–8641.

    Article  CAS  PubMed  Google Scholar 

  • Saltiel, A.R., and Olefsky, J.M. (2017). Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127, 1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Samovski, D., Su, X., Xu, Y., Abumrad, N.A., and Stahl, P.D. (2012). Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 53, 709–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, T., Mushiake, S., Kato, Y., Sato, K., Sato, M., Takeda, N., Ozono, K., Miki, K., Kubo, Y., Tsuji, A., et al. (2007). The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448, 366–369.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, Y., Li, H., Liu, M., **e, B., Wei, W., Wu, J., Meng, F., Wang, H.Y., and Chen, S. (2019). A manganese-superoxide dismutase from Thermus thermophilus HB27 suppresses inflammatory responses and alleviates experimentally induced colitis. Inflammatory Bowel Dis 25, 1644–1655.

    Article  Google Scholar 

  • Shimobayashi, M., Albert, V., Woelnerhanssen, B., Frei, I.C., Weissenberger, D., Meyer-Gerspach, A.C., Clement, N., Moes, S., Colombi, M., Meier, J.A., et al. (2018). Insulin resistance causes inflammation in adipose tissue. J Clin Invest 128, 1538–1550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singel, K.L., and Segal, B.H. (2016). NOX2-dependent regulation of inflammation. Clin Sci 130, 479–490.

    Article  CAS  Google Scholar 

  • Steinberg, G.R., and Hardie, D.G. (2023). New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 24, 255–272.

    Article  CAS  PubMed  Google Scholar 

  • Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513–525.

    Article  CAS  PubMed  Google Scholar 

  • Stone, S., Abkevich, V., Russell, D.L., Riley, R., Timms, K., Tran, T., Trem, D., Frank, D., Jammulapati, S., Neff, C.D., et al. (2006). TBC1D1 is a candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity predisposition. Hum Mol Genet 15, 2709–2720.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, E.B., An, D., Kramer, H.F., Yu, H., Fujii, N.L., Roeckl, K.S.C., Bowles, N., Hirshman, M.F., **e, J., Feener, E.P., et al. (2008). Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem 283, 9787–9796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, E.C., Hook, S.C., Gray, A., Chadt, A., Carling, D., Al-Hasani, H., Heesom, K.J., Hardie, D.G., and Tavaré, J.M. (2018). Isoform-specific AMPK association with TBC1D1 is reduced by a mutation associated with severe obesity. Biochem J 475, 2969–2983.

    Article  CAS  PubMed  Google Scholar 

  • Tong, S.J., Wall, A.A., Hung, Y., Luo, L., and Stow, J.L. (2021). Guanine nucleotide exchange factors activate Rab8a for Toll-like receptor signalling. Small GTPases 12, 27–43.

    Article  CAS  PubMed  Google Scholar 

  • Vichaiwong, K., Purohit, S., An, D., Toyoda, T., Jessen, N., Hirshman, M.F., and Goodyear, L.J. (2010). Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle. Biochem J 431, 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Liu, N., Jiang, H., Li, Q., and **ng, D. (2021). Reactive oxygen species in anticancer immunity: a double-edged sword. Front Bioeng Biotechnol 9, 784612.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Wei, S., Zhou, H., Shen, G., Gan, X., Zhou, S., Qiu, J., Shi, C., and Lu, L. (2019). Hyperglycemia exacerbates acetaminophen-induced acute liver injury by promoting liver-resident macrophage proinflammatory response via AMPK/PI3K/AKT-mediated oxidative stress. Cell Death Discov 5, 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L., Xu, D., Zhou, L., **e, B., Yu, L., Yang, H., Huang, L., Ye, J., Deng, H., Yuan, Y. A., et al. (2014). Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev Cell 30, 378–393.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, Y., Kadowaki, T., Aibara, N., Ohyama, K., Okamoto, K., Sakai, E., and Tsukuba, T. (2022). Coronin1C is a GDP-specific Rab44 effector that controls osteoclast formation by regulating cell motility in macrophages. Int J Mol Sci 23, 6619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssif, C., Cubillos-Rojas, M., Comalada, M., Llonch, E., Perna, C., Djouder, N., and Nebreda, A.R. (2018). Myeloid p38a signaling promotes intestinal IGF-1 production and inflammation-associated tumorigenesis. EMBO Mol Med 10, e8403.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank members of the resource unit at Nan**g University for technical assistance. Thanks to the Ministry of Science and Technology of China (Grant Nos. 2018YFA0801100 and 2021YFF0702100), the National Natural Science Foundation of China (Grant Nos. 32025019 and 31970719 to S.C., 31971067), and the Fundamental Research Funds for the Central Universities (021414380533, 021414380505) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Yu Wang or Shuai Chen.

Ethics declarations

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Rong, P., Zhang, W. et al. TBC1D1 is an energy-responsive polarization regulator of macrophages via governing ROS production in obesity. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-024-2628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-024-2628-1

Navigation