Log in

Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Soybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adedeji, A.A., and Babalola, O.O. (2020). Secondary metabolites as plant defensive strategy: a large role for small molecules in the near root region. Planta 252, 61.

    Article  CAS  PubMed  Google Scholar 

  • Ahuja, I., Kissen, R., and Bones, A.M. (2012). Phytoalexins in defense against pathogens. Trends Plant Sci 17, 73–90.

    Article  CAS  PubMed  Google Scholar 

  • Allwood, J.W., Clarke, A., Goodacre, R., and Mur, L.A.J. (2010). Dual metabolomics: a novel approach to understanding plant-pathogen interactions. Phytochemistry 71, 590–597.

    Article  PubMed  Google Scholar 

  • Allwood, J.W., Ellis, D.I., and Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiologia Plantarum 132, 117–135.

    Article  CAS  PubMed  Google Scholar 

  • Allwood, J.W., Williams, A., Uthe, H., van Dam, N.M., Mur, L.A.J., Grant, M.R., and Pétriacq, P. (2021). Unravelling plant responses to stress—the importance of targeted and untargeted metabolomics. Metabolites 11, 558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly, S.H., Elissawy, A.M., Eldahshan, O.A., Elshanawany, M.A., Efferth, T., and Singab, A.N.B. (2019). The pharmacology of the genus Sophora (Fabaceae): an updated review. Phytomedicine 64, 153070.

    Article  CAS  PubMed  Google Scholar 

  • Andolfo, G., and Ercolano, M.R. (2015). Plant innate immunity multicomponent model. Front Plant Sci 6.

  • Arbona, V., and Gomez-Cadenas, A. (2016). Metabolomics of disease resistance in crops. Curr Issues Mol Biol 19, 13–30.

    PubMed  Google Scholar 

  • Augustin, J.M., Kuzina, V., Andersen, S.B., and Bak, S. (2011). Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72, 435–457.

    Article  CAS  PubMed  Google Scholar 

  • Barile, E., Bonanomi, G., Antignani, V., Zolfaghari, B., Sajjadi, S.E., Scala, F., and Lanzotti, V. (2007). Saponins from Allium minutiflorum with antifungal activity. Phytochemistry 68, 596–603.

    Article  CAS  PubMed  Google Scholar 

  • Bauters, L., Stojilković, B., and Gheysen, G. (2021). Pathogens pulling the strings: effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. Mol Plant Pathol 22, 1436–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bednarek, P., Schneider, B., Svatoš, A., Oldham, N.J., and Hahlbrock, K. (2005). Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol 138, 1058–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berhow, M.A., and Vandercook, C.E. (1989). Biosynthesis of naringin and prunin in detached grapefruit. Phytochemistry 28, 1627–1630.

    Article  CAS  Google Scholar 

  • Bi, W., Zhao, G., Zhou, Y., **a, X., Wang, J., Wang, G., Lu, S., He, W., Bi, T., and Li, J. (2022). Metabonomics analysis of flavonoids in seeds and sprouts of two Chinese soybean cultivars. Sci Rep 12, 5541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley, C.A., Allen, T.W., Sisson, A.J., Bergstrom, G.C., Bissonnette, K.M., Bond, J., Byamukama, E., Chilvers, M.I., Collins, A.A., Damicone, J.P., et al. (2021). Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2015 to 2019. Plant Health Prog 22, 483–495.

    Article  Google Scholar 

  • Carter, J.P., Spink, J., Cannon, P.F., Daniels, M.J., and Osbourn, A.E. (1999). Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Appl Environ Microbiol 65, 3364–3372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Céliz, G., Audisio, M.C., and Daz, M. (2010). Antimicrobial properties of prunin, a citric flavanone glucoside, and its prunin 6″-O-lauroyl ester. J Appl Microbiol 109, 1450–1457.

    Article  PubMed  Google Scholar 

  • Chandra, S., Choudhary, M., Bagaria, P.K., Nataraj, V., Kumawat, G., Choudhary, J. R., Sonah, H., Gupta, S., Wani, S.H., and Ratnaparkhe, M.B. (2022). Progress and prospectus in genetics and genomics of Phytophthora root and stem rot resistance in soybean (Glycine max L.). Front Genet 13, 939182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Liu, X., Zhang, H., Yuan, X., Gu, H., Cui, X., and Chen, X. (2018). Advances in salinity tolerance of soybean: genetic diversity, heredity, and gene identification contribute to improving salinity tolerance. J Integre Agr 17, 2215–2221.

    Article  CAS  Google Scholar 

  • Corgan, J.N. (1967). Identification of Prunin (Naringenin-7-Glucoside) in dormant peach buds as a wheat coleoptile growth inhibitor1. HortScience 2, 105–106.

    Article  CAS  Google Scholar 

  • Cruz, D.R., Leandro, L.F.S., Mayfield, D.A., Meng, Y., and Munkvold, G.P. (2020). Effects of soil conditions on root rot of soybean caused by Fusarium graminearum. Phytopathol 110, 1693–1703.

    Article  CAS  Google Scholar 

  • Da, X., Nishiyama, Y., Tie, D., Hein, K.Z., Yamamoto, O., and Morita, E. (2019). Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi. Sci Rep 9, 1683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Divekar, P.A., Narayana, S., Divekar, B.A., Kumar, R., Gadratagi, B.G., Ray, A., Singh, A.K., Rani, V., Singh, V., Singh, A.K., et al. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci 23, 2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Fall, L.A., and Solomon, P.S. (2011). Role of cereal secondary metabolites involved in mediating the outcome of plant-pathogen interactions. Metabolites 1, 64–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari, S., Plotnikova, J.M., De Lorenzo, G., and Ausubel, F.M. (2003). Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35, 193–205.

    Article  CAS  PubMed  Google Scholar 

  • Goellner, K., Loehrer, M., Langenbach, C., Conrath, U., Koch, E., and Schaffrath, U. (2010). Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Mol Plant Pathol 11, 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Goh, Y.X., Jalil, J., Lam, K.W., Husain, K., and Premakumar, C.M. (2022). Genistein: a review on its anti-inflammatory properties. Front Pharmacol 13, 820969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunaseelan, S., Wong, K.Z., Min, N., Sun, J., Ismail, N.K.B.M., Tan, Y.J., Lee, R.C.H., and Chu, J.J.H. (2019). Prunin suppresses viral IRES activity and is a potential candidate for treating enterovirus A71 infection. Sci Transl Med 11, eaar5759.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Dixon, R.A., and Paiva, N.L. (1994). The “pterocarpan synthase” of alfalfa: association and co-induction of vestitone reductase and 7,2′-dihydroxy-4′-methoxy-isoflavanol (DMI) dehydratase, the two final enzymes in medicarpin biosynthesis. FEBS Lett 356, 221–225.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z.Y., Kong, C.H., Wang, J.G., and Wang, Y.F. (2011). Rhizosphere isoflavones (daidzein and genistein) levels and their relation to the microbial community structure of mono-cropped soybean soil in field and controlled conditions. Soil Biol Biochem 43, 2257–2264.

    Article  CAS  Google Scholar 

  • Hafez, M., Abdelmagid, A., Aboukhaddour, R., Adam, L.R., and Daayf, F. (2021). Fusarium root rot complex in soybean: molecular characterization, trichothecene formation, and cross-pathogenicity. Phytopathol 111, 2287–2302.

    Article  CAS  Google Scholar 

  • Hu, B., Yang, C., Iqbal, N., Deng, J., Zhang, J., Yang, W., and Liu, J. (2018). Development and validation of a GC-MS method for soybean organ-specific metabolomics. Plant Production Sci 21, 215–224.

    Article  CAS  Google Scholar 

  • Hu, D., Chen, Z.Y., Zhang, C., and Ganiger, M. (2020). Reduction of Phakopsora pachyrhizi infection on soybean through host- and spray-induced gene silencing. Mol Plant Pathol 21, 794–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, C., Wang, Y., Zheng, X., Dou, D., Zhang, Z., Govers, F., and Wang, Y. (2008). A Phytophthora sojae G-protein a subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell 7, 2133–2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki, Y.S., Noutoshi, Y., Fujita, K., Imaoka, A., Arase, S., Toyoda, K., Shiraishi, T., and Ichinose, Y. (2013). Infection-inhibition activity of avenacin saponins against the fungal pathogens Blumeria graminis f. sp. hordei, Bipolaris oryzae, and Magnaporthe oryzae. J Gen Plant Pathol 79, 69–73.

    Article  Google Scholar 

  • Kang, W., Zhu, X., Wang, Y., Chen, L., and Duan, Y. (2018). Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematode in soybean. BMC Plant Biol 18, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, H., and Lee, D.G. (2020). Nitric oxide–inducing Genistein elicits apoptosis-like death via an intense SOS response in Escherichia coli. Appl Microbiol Biotechnol 104, 10711–10724.

    Article  CAS  PubMed  Google Scholar 

  • Kitazono, J., Grozavu, N., Rogovschi, N., Omori, T., and Ozawa, S. (2016). t-Distributed Stochastic Neighbor Embedding with inhomogeneous degrees of freedom. Lect Notes Comput Sci 9949, 119–128.

    Article  Google Scholar 

  • Kliebenstein, D.J., Rowe, H.C., and Denby, K.J. (2005). Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44, 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Koeck, M., Hardham, A.R., and Dodds, P.N. (2011). The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiol 13, 1849–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosslak, R.M., Bookland, R., Barkei, J., Paaren, H.E., and Appelbaum, E.R. (1987). Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci USA 84, 7428–7432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Rajput, L.S., Ramteke, R., Nataraj, V., Ratnaparkhe, M.B., Maheshwari, H. S., and Shivakumar, M. (2021). First report of root rot and dam**-off disease in soybean (Glycine max) Caused by Pythium deliense in India. Plant Dis 105, 2022.

    Article  Google Scholar 

  • Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G.A.A., van West, P., and Govers, F. (2004). A Ga subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51, 925–936.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.J., and Rose, J.K.C. (2010). Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal Behav 5, 769–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, D., Baldwin, I.T., and Gaquerel, E. (2015). Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/ MS structural analysis. Proc Natl Acad Sci USA 112, E4147–E4155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, N., Zhou, Q., Chang, K.F., Yu, H., Hwang, S.F., Conner, R.L., Strelkov, S.E., McLaren, D.L., and Turnbull, G.D. (2019). Occurrence, pathogenicity and species identification of Pythium causing root rot of soybean in Alberta and Manitoba, Canada. Crop Protection 118, 36–43.

    Article  Google Scholar 

  • Li, Y., Chen, Y., Zhou, L., You, S., Deng, H., Chen, Y., Alseekh, S., Yuan, Y., Fu, R., Zhang, Z., et al. (2020). MicroTom metabolic network: rewiring tomato metabolic regulatory network throughout the growth cycle. Mol Plant 13, 1203–1218.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Li, M., Xu, J., Liu, X., Wang, S., and Shi, L. (2019). Physiological and metabolomics analyses of young and old leaves from wild and cultivated soybean seedlings under low-nitrogen conditions. BMC Plant Biol 19, 389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lygin, A.V., Hill, C.B., Zernova, O.V., Crull, L., Widholm, J.M., Hartman, G.L., and Lozovaya, V.V. (2010). Response of soybean pathogens to glyceollin. Phytopathol 100, 897–903.

    Article  CAS  Google Scholar 

  • Lygin, A.V., Zernova, O.V., Hill, C.B., Kholina, N.A., Widholm, J.M., Hartman, G.L., and Lozovaya, V.V. (2013). Glyceollin is an important component of soybean plant defense against Phytophthora sojae and Macrophomina phaseolina. Phytopathol 103, 984–994.

    Article  CAS  Google Scholar 

  • Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., and Zhang, S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23, 1639–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengiste, T. (2012). Plant immunity to necrotrophs. Annu Rev Phytopathol 50, 267–294.

    Article  CAS  PubMed  Google Scholar 

  • Morrissey, J.P., and Osbourn, A.E. (1999). Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63, 708–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougi, A., Kishida, O., and Iwasa, Y. (2011). Coevolution of phenotypic plasticity in predator and prey: why are inducible offenses rarer than inducible defenses? Evolution 65, 1079–1087.

    Article  PubMed  Google Scholar 

  • Nakayasu, M., Shioya, N., Shikata, M., Thagun, C., Abdelkareem, A., Okabe, Y., Ariizumi, T., Arimura, G.H., Mizutani, M., Ezura, H., et al. (2018). JRE 4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. Plant J 94, 975–990.

    Article  CAS  PubMed  Google Scholar 

  • Oh, D.R., Kim, J.R., and Kim, Y.R. (2010). Genistein inhibits Vibrio vulnificus adhesion and cytotoxicity to HeLa cells. Arch Pharm Res 33, 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Ökmen, B., Etalo, D.W., Joosten, M.H.A.J., Bouwmeester, H.J., de Vos, R.C.H., Collemare, J., and de Wit, P.J.G.M. (2013). Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytol 198, 1203–1214.

    Article  PubMed  Google Scholar 

  • Osbourn, A., Bowyer, P., Bryan, G., Lunness, P., Clarke, B., and Daniels, M. (1994). Detoxification of plant saponins by fungi. Curr Plant Sci Biot 21, 215–221.

    CAS  Google Scholar 

  • Osbourn, A.E. (1996). Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8, 1821–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pareja-Jaime, Y., Roncero, M.I.G., and Ruiz-Roldán, M.C. (2008). Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants. Mol Plant Microbe Interact 21, 728–736.

    Article  CAS  PubMed  Google Scholar 

  • Qin, X., Yin, Y., Zhao, J., An, W., Fan, Y., Liang, X., and Cao, Y. (2022). Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress. BMC Plant Biol 22, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers, E.E. (1996). Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-Pathogen interactions. Mol Plant Microbe Interact 9, 748–757.

    Article  CAS  PubMed  Google Scholar 

  • Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., and Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3, 430–439.

    Article  PubMed  Google Scholar 

  • Schäfer, M., Brütting, C., Baldwin, I.T., and Kallenbach, M. (2016). High-throughput quantification of more than 100 primary- and secondary-metabolites, and phytohormones by a single solid-phase extraction based sample preparation with analysis by UHPLC-HESI-MS/MS. Plant Methods 12, 30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlaeppi, K., Abou-Mansour, E., Buchala, A., and Mauch, F. (2010). Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62, 840–851.

    Article  CAS  PubMed  Google Scholar 

  • Selvam, C., Jordan, B.C., Prakash, S., Mutisya, D., and Thilagavathi, R. (2017). Pterocarpan scaffold: a natural lead molecule with diverse pharmacological properties. Eur J Med Chem 128, 219–236.

    Article  CAS  PubMed  Google Scholar 

  • Serag, A., Salem, M.A., Gong, S., Wu, J.L., and Farag, M.A. (2023). Decoding metabolic reprogramming in plants under pathogen attacks, a comprehensive review of emerging metabolomics technologies to maximize their applications. Metabolites 13, 424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, Z.H., Liu, Y., Ba, H.P., Shan, L.M., Chen, H.F., Sha, A.H., Qiu, D.Z., Yang, Z.L., Chen, S.L., Zhou, X.A. (2012). New soybean germplasm resistance to Phakopsora pachyrhizi syd (in Chinese). Chin J Oil Crop Sci. 34, 188–192.

    Google Scholar 

  • Simms, E.L., and Rausher, M.D. (1987). Costs and benefits of plant resistance to herbivory. AmNaturalist 130, 570–581.

    Article  Google Scholar 

  • Soterroni, A.C., Ramos, F.M., Mosnier, A., Fargione, J., Andrade, P.R., Baumgarten, L., Pirker, J., Obersteiner, M., Kraxner, F., Câmara, G., et al. (2019). Expanding the Soy Moratorium to Brazil’s Cerrado. Sci Adv 5, eaav7336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spoel, S.H., Johnson, J.S., and Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104, 18842–18847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szakiel, A., Pączkowski, C., and Henry, M. (2011). Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev 10, 471–491.

    Article  CAS  Google Scholar 

  • Teshima, Y., Ikeda, T., Imada, K., Sasaki, K., El-Sayed, M.A., Shigyo, M., Tanaka, S., and Ito, S. (2013). Identification and biological activity of antifungal saponins from shallot (Allium cepa L. Aggregatum group). J Agric Food Chem 61, 7440–7445.

    Article  CAS  PubMed  Google Scholar 

  • Tesson, B.M., Breitling, R., and Jansen, R.C. (2010). DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC BioInf 11, 497.

    Article  Google Scholar 

  • Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., and Singh, B.K. (2020). Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18, 607–621.

    Article  CAS  PubMed  Google Scholar 

  • TÜRK, F.M., Egesel, C.Ö., and Gül, M.K. (2005). Avenacin A-1 content of some local oat genotypes and the in vitro effect of avenacins on several soil-borne fungal pathogens of cereals. Turkish J Agric Forestry 29, 157–164.

    Google Scholar 

  • Tyler, B.M. (2007). Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Pathol 8, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Udayanga, D., Castlebury, L.A., Rossman, A.Y., Chukeatirote, E., and Hyde, K.D. (2015). The Diaporthe sojae species complex: phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biol 119, 383–407.

    Article  PubMed  Google Scholar 

  • Valladares, F., Sanchez-Gomez, D., and Zavala, M.A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94, 1103–1116.

    Article  Google Scholar 

  • van Wees, S.C.M., Chang, H.S., Zhu, T., and Glazebrook, J. (2003). Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol 132, 606–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughn, D. (2010). Why run and hide when you can divide? Evidence for larval cloning and reduced larval size as an adaptive inducible defense. Mar Biol 157, 1301–1312.

    Article  Google Scholar 

  • Veitch, N.C. (2013). Isoflavonoids of the leguminosae. Nat Prod Rep 30, 988–1027.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Alseekh, S., Fernie, A.R., and Luo, J. (2019). The structure and function of major plant metabolite modifications. Mol Plant 12, 899–919.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Zhao, W., Hua, C., Zheng, X., **g, M., Li, D., Govers, F., Meijer, H.J.G., and Wang, Y. (2013). Chemotaxis and oospore formation in Phytophthora sojae are controlled by G-protein-coupled receptors with a phosphatidylinositol phosphate kinase domain. Mol Microbiol 88, 382–394.

    Article  CAS  PubMed  Google Scholar 

  • Yu, C., Miao, R., and Khanna, M. (2021). Maladaptation of U.S. corn and soybeans to a changing climate. Sci Rep 11, 12351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue, Y., and Hu, Y.J. (2022). Extension of PERMANOVA to testing the mediation effect of the microbiome. Genes 13, 940–2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue, Z., He, S., Wang, J., Jiang, Q., Wang, H., Wu, J., Li, C., Wang, Z., He, X., and Jia, N. (2023). Glyceollins from soybean: their pharmacological effects and biosynthetic pathways. Heliyon 9, e21874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Zhang, F., Melotto, M., Yao, J., and He, S.Y. (2017). Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot 68, 1371–1385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Hu, Y., Wang, Y., Li, M., Han, D., Gao, S., Hu, Y., Guo, J., Zhang, T., and Shi, L. (2023). Integrated transcriptomics and metabolomics reveals that regulating biosynthesis and metabolism of HCN and GABA plays a key role in drought resistance of wild soybean. Environ Exp Bot 215, 105505.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhai, C., Hua, C., Qiu, M., Hao, Y., Nie, P., Ye, W., and Wang, Y. (2016). PsHint1, associated with the G-protein a subunit PsGPA1, is required for the chemotaxis and pathogenicity of Phytophthora sojae. Mol Plant Pathol 17, 272–285.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Bi, X., Du, X., Liu, H., An, T., Zhao, Y., Yu, H., Chen, Y., and Wen, J. (2022). Comparative metabolomics reveal the participation of soybean unique rhizosphere metabolites in susceptibility and resistance of host soybean to Phytophthora sojae. Plant Soil 480, 185–199.

    Article  CAS  Google Scholar 

  • Zhao, X., Zhang, Z., Zheng, S., Ye, W., Zheng, X., and Wang, Y. (2021). Genome sequence resource of Phomopsis longicolla YC2-1, a fungal pathogen causing phomopsis stem blight in soybean. Mol Plant Microbe Interact 34, 842–844.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Wang, X., He, Y., Sang, T., Wang, P., Dai, S., Zhang, S., and Meng, X. (2020). Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis. Plant Cell 32, 2621–2638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., Lin, T., Qin, M., Peng, M., Yang, C., et al. (2018a). Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261.e12.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L., Zhou, Y., Li, X., Zhao, J., Guo, N., and **ng, H. (2018b). Metabolomics analysis of soybean hypocotyls in response to Phytophthora sojae infection. Front Plant Sci 9, 1530.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zvereva, E.L., Kozlov, M.V., Niemelä, P., and Haukioja, E. (1997). Delayed induced resistance and increase in leaf fluctuating asymmetry as responses of Salix borealis to insect herbivory. Oecologia 109, 368–373.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (32100044), the Jiangsu “Innovative and Entrepreneurial Talent” program (JSSCRC2021510), and the Fundamental Research Funds for the Central Universities (KYT2023005). Bioinformatics analyses were supported by the high-performance computing platform of Bioinformatics Center, Nan**g Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Wang or Yuanchao Wang.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, M., Tian, M., Sun, Y. et al. Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2596-1

Navigation