Log in

Distinct and shared endothermic strategies in the heat producing tissues of tuna and other teleosts

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Although most fishes are ectothermic, some, including tuna and billfish, achieve endothermy through specialized heat producing tissues that are modified muscles. How these heat producing tissues evolved, and whether they share convergent molecular mechanisms, remain unresolved. Here, we generated a high-quality genome from the mackerel tuna (Euthynnus affinis) and investigated the heat producing tissues of this fish by single-nucleus and bulk RNA sequencing. Compared with other teleosts, tuna-specific genetic variation is strongly associated with muscle differentiation. Single-nucleus RNA-seq revealed a high proportion of specific slow skeletal muscle cell subtypes in the heat producing tissues of tuna. Marker genes of this cell subtype are associated with the relative sliding of actin and myosin, suggesting that tuna endothermy is mainly based on shivering thermogenesis. In contrast, cross-species transcriptome analysis indicated that endothermy in billfish relies mainly on non-shivering thermogenesis. Nevertheless, the heat producing tissues of the different species do share some tissue-specific genes, including vascular-related and mitochondrial genes. Overall, although tunas and billfishes differ in their thermogenic strategies, they share similar expression patterns in some respects, highlighting the complexity of convergent evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J.E., Majoros, W.H., Pertea, M., and Salzberg, S.L. (2006). JIGSAW, GeneZilla, and GlimmerHMM: puzzling out the features of human genes in the ENCODE regions. Genome Biol 7, S9.

    Article  PubMed Central  Google Scholar 

  • Bal, N.C., Maurya, S.K., Sopariwala, D.H., Sahoo, S.K., Gupta, S.C., Shaikh, S.A., Pant, M., Rowland, L.A., Bombardier, E., Goonasekera, S.A., et al. (2012). Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18, 1575–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and genomewise. Genome Res 14, 988–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchette, M., Kent, W.J., Riemer, C., Elnitski, L., Smit, A.F.A., Roskin, K.M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D., et al. (2004). Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 14, 708–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block, B.A. (1986). Structure of the brain and eye heater tissue in marlins, sailfish, and spearfishes. J Morphol 190, 169–189.

    Article  CAS  PubMed  Google Scholar 

  • Block, B.A. (1991). Evolutionary novelties: How fish have built a heater out of muscle. Am Zool 31, 726–742.

    Article  Google Scholar 

  • Boye, J., Musyl, M., Brill, R., and Malte, H. (2009). Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus)—a 2D heat flux model. J Exp Biol 212, 3708–3718.

    Article  PubMed  Google Scholar 

  • Chen, B., Xu, X., Lin, D., Chen, X., Xu, Y., Liu, X., and Dong, W. (2021a). KRT18 modulates alternative splicing of genes involved in proliferation and apoptosis processes in both gastric cancer cells and clinical samples. Front Genet 12, 635429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Zhang, H., Bai, Y., Cui, C., Li, S., Wang, W., Deng, Y., Gao, Q., Wang, L., Qi, W., et al. (2021b). Single cell transcriptomic analysis identifies novel vascular smooth muscle subsets under high hydrostatic pressure. Sci China Life Sci 64, 1677–1690.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., and Li, H. (2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18, 170–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciezarek, A., Gardner, L., Savolainen, V., and Block, B. (2020). Skeletal muscle and cardiac transcriptomics of a regionally endothermic fish, the Pacific bluefin tuna, Thunnus orientalis. BMC Genomics 21, 642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cudmore, M.J., Hewett, P.W., Ahmad, S., Wang, K.Q., Cai, M., Al-Ani, B., Fujisawa, T., Ma, B., Sissaoui, S., Ramma, W., et al. (2012). The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis. Nat Commun 3, 972.

    Article  PubMed  Google Scholar 

  • Davenport, J., Jones, T.T., Work, T.M., and Balazs, G.H. (2015). Topsyturvy: turning the counter-current heat exchange of leatherback turtles upside down. Biol Lett 11, 20150592.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Bie, T., Cristianini, N., Demuth, J.P., and Hahn, M.W. (2006). CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271.

    Article  CAS  PubMed  Google Scholar 

  • Dickson, K.A. (1995). Unique adaptations of the metabolic biochemistry of tunas and billfishes for life in the pelagic environment. Environ Biol Fish 42, 65–97.

    Article  Google Scholar 

  • Dickson, K.A., and Graham, J.B. (2004). Evolution and consequences of endothermy in fishes. Physiol Biochem Zool 77, 998–1018.

    Article  PubMed  Google Scholar 

  • Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., et al. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., and Aiden, E.L. (2016a). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3, 99–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S.P., Huntley, M.H., Lander, E.S., and Aiden, E.L. (2016b). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3, 95–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emms, D.M., and Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16, 157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster, C.S.P., Van Dyke, J.U., Thompson, M.B., Smith, N.M.A., Simpfendorfer, C.A., Murphy, C.R., and Whittington, C.M. (2022). Different genes are recruited during convergent evolution of pregnancy and the placenta. Mol Biol Evol 39.

  • Gallant, J.R., Traeger, L.L., Volkening, J.D., Moffett, H., Chen, P.H., Novina, C.D., Phillips Jr., G.N., Anand, R., Wells, G.B., Pinch, M., et al. (2014). Genomic basis for the convergent evolution of electric organs. Science 344, 1522–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Salinero, J.M., Izzo, F., Lin, Y., Houghton, S., Itkin, T., Geng, F., Bram, Y., Adelson, R.P., Lu, T.M., Inghirami, G., et al. (2022). Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 29, 593–609.e7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham, J.B., Koehrn, F.J., and Dickson, K.A. (1983). Distribution and relative proportions of red muscle in scombrid fishes: consequences of body size and relationships to locomotion and endothermy. Can J Zool 61, 2087–2096.

    Article  Google Scholar 

  • Grant, T.R., and Dawson, T.J. (1978). Temperature regulation in the platypus, ornithorhynchus anatinus: production and loss of metabolic heat in air and water. Physiol Zool 51, 315–332.

    Article  Google Scholar 

  • Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell, C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biol 9, R7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, L., Wei, X., Liu, C., Volpe, G., Zhuang, Z., Zou, X., Wang, Z., Pan, T., Yuan, Y., Zhang, X., et al. (2022). Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731.

    Article  CAS  PubMed  Google Scholar 

  • Hastings, K.E.M. (1997). Molecular evolution of the vertebrate troponin I gene family. Cell Struct Funct 22, 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Havelka, M., Sawayama, E., Saito, T., Yoshitake, K., Saka, D., Ineno, T., Asakawa, S., Takagi, M., Goto, R., and Matsubara, T. (2021). Chromosome-scale genome assembly and transcriptome assembly of kawakawa Euthynnus affinis a tuna-like species. Front Genet 12, 739781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-García, R., Iruela-Arispe, M.L., Reyes-Cruz, G., and Vázquez-Prado, J. (2015). Endothelial RhoGEFs: A systematic analysis of their expression profiles in VEGF-stimulated and tumor endothelial cells. Vascul Pharmacol 74, 60–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez, O.M., Jones, M., Guzman, G., and Szczesna-Cordary, D. (2007). Myosin essential light chain in health and disease. Am J Physiol Heart Circ Physiol 292, H1643–H1654.

    Article  CAS  PubMed  Google Scholar 

  • Hu, M.L., Wu, B.S., Xu, W.J., Zhu, C.L., Yuan, Y., Lv, W.Q., Qiu, Q., Zhang, H.B., Wang, K., and Feng, C.G. (2022). Gene expression responses in zebrafish to short-term high-hydrostatic pressure. Zool Res 43, 188–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28, 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedlian, V.R., Wang, Y., Liu, T., Chen, X., Bolt, L., Shen, Z., Fasouli, E.S., Prigmore, E., Kleshchevnikov, V., Li, T., et al. (2022). Human skeletal muscle ageing atlas. bioRxiv, 2022.2005.2024.493094.

  • Kielbasa, S.M., Wan, R., Sato, K., Horton, P., and Frith, M.C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Res 21, 487–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre, L.J., and Davesne, D. (2020). The evolution of mechanisms involved in vertebrate endothermy. Phil Trans R Soc B 375, 20190136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinwand, L.A., Saez, L., McNally, E., and Nadal-Ginard, B. (1983). Isolation and characterization of human myosin heavy chain genes. Proc Natl Acad Sci USA 80, 3716–3720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luna, V.M., Daikoku, E., and Ono, F. (2015). “Slow” skeletal muscles across vertebrate species. Cell Biosci 5, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, R., Liu, B., **e, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madigan, D.J., Carlisle, A.B., Gardner, L.D., Jayasundara, N., Micheli, F., Schaefer, K.M., Fuller, D.W., and Block, B.A. (2015). Assessing niche width of endothermic fish from genes to ecosystem. Proc Natl Acad Sci USA 112, 8350–8355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manni, M., Berkeley, M.R., Seppey, M., Simão, F.A., and Zdobnov, E.M. (2021). BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 38, 4647–4654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcovitz, A., Turakhia, Y., Chen, H.I., Gloudemans, M., Braun, B.A., Wang, H., and Bejerano, G. (2019). A functional enrichment test for molecular convergent evolution finds a clear protein-coding signal in echolocating bats and whales. Proc Natl Acad Sci USA 116, 21094–21103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith, C., Herrmann, R., Parry, C., Liyanage, K., Dye, D.E., Durling, H. J., Duff, R.M., Beckman, K., de Visser, M., van der Graaff, M.M., et al. (2004). Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause laing early-onset distal myopathy (MPD1). Am J Hum Genet 75, 703–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metikala, S., Casie Chetty, S., and Sumanas, S. (2021). Single-cell transcriptome analysis of the zebrafish embryonic trunk. PLoS ONE 16, e0254024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller, S.B., and Kontos, C.D. (2016). Tie1: an orphan receptor provides context for angiopoietin-2/Tie2 signaling. J Clin Invest 126, 3188–3191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura, Y., Mori, K., Saitoh, K., Oshima, K., Mekuchi, M., Sugaya, T., Shigenobu, Y., Ojima, N., Muta, S., Fujiwara, A., et al. (2013). Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proc Natl Acad Sci USA 110, 11061–11066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesmith, J.E., Chappell, J.C., Cluceru, J.G., and Bautch, V.L. (2017). Blood vessel anastomosis is spatially regulated by Flt1 during angiogenesis. Development 144, 889–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noviski, M., Mueller, J.L., Satterthwaite, A., Garrett-Sinha, L.A., Brombacher, F., and Zikherman, J. (2018). IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. Elife 7, e35074.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowack, J., Giroud, S., Arnold, W., and Ruf, T. (2017). Muscle non-shivering thermogenesis and its role in the evolution of endothermy. Front Physiol 8, 889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldfors, A. (2007). Hereditary myosin myopathies. Neuromuscul Disord 17, 355–367.

    Article  PubMed  Google Scholar 

  • Periasamy, M., Herrera, J.L., and Reis, F.C.G. (2017). Skeletal muscle thermogenesis and its role in whole body energy metabolism. Diabetes Metab J 41, 327–336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33, 290–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland, L.A., Bal, N.C., and Periasamy, M. (2015). The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev 90, 1279–1297.

    Article  PubMed  Google Scholar 

  • Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., and Eliceiri, K.W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC BioInf 18, 529.

    Article  Google Scholar 

  • Saha, S., Bridges, S., Magbanua, Z.V., and Peterson, D.G. (2008). Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res 36, 2284–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafer, M.E.R., Sawh, A.N., and Schier, A.F. (2022). Gene family evolution underlies cell-type diversification in the hypothalamus of teleosts. Nat Ecol Evol 6, 63–76.

    Article  PubMed  Google Scholar 

  • Shelton, M., Ritso, M., Liu, J., O’Neil, D., Kocharyan, A., Rudnicki, M.A., Stanford, W.L., Skerjanc, I.S., and Blais, A. (2019). Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression. PLoS ONE 14, e0222946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng, J.J., and **, J.P. (2016). TNNI1, TNNI2 and TNNI3 evolution, regulation, and protein structure-function relationships. Gene 576, 385–394.

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanke, M., and Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33, W465–W467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoehr, A., Martin, J.S., Aalbers, S., Sepulveda, C., and Bernal, D. (2018). Free-swimming swordfish, **phias gladius, alter the rate of whole body heat transfer: morphological and physiological specializations for thermoregulation. ICES J Mar Sci 75, 858–870.

    Article  Google Scholar 

  • Syme, D.A., and Shadwick, R.E. (2011). Red muscle function in stiff-bodied swimmers: there and almost back again. Phil Trans R Soc B 366, 1507–1515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarailo-Graovac, M., and Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics 25, 4–10.

    Article  Google Scholar 

  • Taylor, M.V., and Hughes, S.M. (2017). Mef2 and the skeletal muscle differentiation program. Semin Cell Dev Biol 72, 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Tullis, A., and Block, B.A. (1997). Histochemical and immunohistochemical studies on the origin of the blue marlin heater cell phenotype. Tissue Cell 29, 627–642.

    Article  CAS  PubMed  Google Scholar 

  • Vestweber, D. (2021). Vascular endothelial protein tyrosine phosphatase regulates endothelial function. Physiology 36, 84–93.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Zhao, Y., and Zhang, B. (2015). Efficient test and visualization of multi-set intersections. Sci Rep 5, 16923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Qu, M., Liu, Y., Schneider, R.F., Song, Y., Chen, Z., Zhang, H., Zhang, Y., Yu, H., Zhang, S., et al. (2022). Genomic basis of evolutionary adaptation in a warm-blooded fish. Innovation 3, 100185.

    CAS  PubMed  Google Scholar 

  • Watanabe, Y.Y., Goldman, K.J., Caselle, J.E., Chapman, D.D., and Papastamatiou, Y.P. (2015). Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. Proc Natl Acad Sci USA 112, 6104–6109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, B., and **, J.P. (2016). TNNT1, TNNT2, and TNNT3 isoform genes, regulation, and structure-function relationships. Gene 582, 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss, A., McDonough, D., Wertman, B., Acakpo-Satchivi, L., Montgomery, K., Kucherlapati, R., Leinwand, L., and Krauter, K. (1999). Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proc Natl Acad Sci USA 96, 2958–2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolock, S.L., Lopez, R., and Klein, A.M. (2019). Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8, 281–291.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, B., Feng, C., Zhu, C., Xu, W., Yuan, Y., Hu, M., Yuan, K., Li, Y., Ren, Y., Zhou, Y., et al. (2021). The genomes of two billfishes provide insights into the evolution of endothermy in teleosts. Mol Biol Evol 38, 2413–2427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, M.A., Ogura, A., Ikeo, K., Shigeno, S., Moritaki, T., Winters, G. C., Kohn, A.B., and Moroz, L.L. (2015). Molecular evidence for convergence and parallelism in evolution of complex brains of cephalopod Molluscs: Insights from visual systems. Integr Comp Biol 55, 1070–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, M.D., and Behjati, S. (2020). SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9.

  • Zhang, Y., Park, C., Bennett, C., Thornton, M., and Kim, D. (2021). Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res 31, 1290–1295.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32122021), the National Key Research and Development Program of China (2022YFC3400300), the 1000 Talent Project of Shaanxi Province to Q.Q. and K.W., the Fundamental Research Funds of Northwestern Polytechnic University, and the Open Foundation from Marine Sciences in the First-Class Subjects of Zhejiang (OFMS011). We thank Zhengyi Fu, Bo ** He

  • Authors

    Corresponding authors

    Correspondence to Zhenhua Ma, Qiang Qiu or Kun Wang.

    Ethics declarations

    The author(s) declare that they have no conflict of interest.

    Supporting Information

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Wu, B., Gao, X., Hu, M. et al. Distinct and shared endothermic strategies in the heat producing tissues of tuna and other teleosts. Sci. China Life Sci. 66, 2629–2645 (2023). https://doi.org/10.1007/s11427-022-2312-1

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s11427-022-2312-1

    Navigation