Log in

A trade-off between space exploration and mobilization of organic phosphorus through associated microbiomes enables niche differentiation of arbuscular mycorrhizal fungi on the same root

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Ecology seeks to explain species coexistence, but experimental tests of mechanisms for coexistence are difficult to conduct. We synthesized an arbuscular mycorrhizal (AM) fungal community with three fungal species that differed in their capacity of foraging for orthophosphate (P) due to differences in soil exploration. We tested whether AM fungal species-specific hyphosphere bacterial assemblages recruited by hyphal exudates enabled differentiation among the fungi in the capacity of mobilizing soil organic P (Po). We found that the less efficient space explorer, Gigaspora margarita, obtained less 13C from the plant, whereas it had higher efficiencies in Po mobilization and alkaline phosphatase (AlPase) production per unit C than the two efficient space explorers, Rhizophagusintraradices and Funneliformis mosseae. Each AM fungus was associated with a distinct alp gene harboring bacterial assemblage, and the alp gene abundance and Po preference of the microbiome associated with the less efficient space explorer were higher than those of the two other species. We conclude that the traits of AM fungal associated bacterial consortia cause niche differentiation. The trade-off between foraging ability and the ability to recruit effective Po mobilizing microbiomes is a mechanism that allows co-existence of AM fungal species in a single plant root and surrounding soil habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Availability of data and materials

The Illumina MiSeq sequence datasets are available at the NCBI Sequence Read Archive BioProject ID PRJNA718990. All other data are available in the main text or supplementary materials.

References

  • Balzergue, C., Puech-Pagès, V., Bécard, G., and Rochange, S.F. (2011). The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62, 1049–1060.

    Article  CAS  PubMed  Google Scholar 

  • Bell, G. (2000). The distribution of abundance in neutral communities. Am Nat 155, 606–617.

    Article  PubMed  Google Scholar 

  • Biddle, J.F., Fitz-Gibbon, S., Schuster, S.C., Brenchley, J.E., and House, C. H. (2008). Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105, 10583–10588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittebiere, A.K., Vandenkoornhuyse, P., Maluenda, E., Gareil, A., Dheilly, A., Coudouel, S., Bahin, M., and Mony, C. (2020). Past spatial structure of plant communities determines arbuscular mycorrhizal fungal community assembly. J Ecol 108, 546–560.

    Article  Google Scholar 

  • Boddington, C.L., and Dodd, J.C. (1999). Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies. New Phytol 142, 531–538.

    Article  Google Scholar 

  • Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S., and Potts, J.M. (2003). A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69, 3593–3599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavender-Bares, J., Kitajima, K., and Bazzaz, F.A. (2004). Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr 74, 635–662.

    Article  Google Scholar 

  • Chave, J. (2004). Neutral theory and community ecology. Ecol Lett 7, 241–253.

    Article  Google Scholar 

  • Chen, L., Zheng, Y., Gao, C., Mi, X.C., Ma, K.P., Wubet, T., and Guo, L.D. (2017). Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest. Mol Ecol 26, 2563–2575.

    Article  CAS  PubMed  Google Scholar 

  • Coyte, K.Z., Rao, C.T., Rakoff-Nahoum, S., and Foster, K.R. (2021). Ecological rules for the assembly of microbiome communities. PLoS Biol 19, e3001116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deniro, M.J., and Epstein, S. (1978). Carbon isotopic evidence for different feeding patterns in two hyrax species occupying the same habitat. Science 201, 906–908.

    Article  CAS  PubMed  Google Scholar 

  • DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72, 5069–5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drigo, B., Pijl, A.S., Duyts, H., Kielak, A.M., Gamper, H.A., Houtekamer, M.J., Boschker, H.T.S., Bodelier, P.L.E., Whiteley, A.S., Veen, J.A., et al. (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci USA 107, 10938–10942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumbrell, A.J., Nelson, M., Helgason, T., Dytham, C., and Fitter, A.H. (2010). Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4, 337–345.

    Article  PubMed  Google Scholar 

  • Duplessis, S., Cuomo, C.A., Lin, Y.C., Aerts, A., Tisserant, E., Veneault-Fourrey, C., Joly, D.L., Hacquard, S., Amselem, J., Cantarel, B.L., et al. (2011). Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 108, 9166–9171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmett, B.D., Lévesque-Tremblay, V., and Harrison, M.J. (2021). Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J 15, 2276–2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinsinger, P., Spears, E.E., and Poole, R.W. (1981). A simple measure of niche breadth. Ecology 62, 27–32.

    Article  Google Scholar 

  • Fraser, T.D., Lynch, D.H., Bent, E., Entz, M.H., and Dunfield, K.E. (2015). Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol Biochem 88, 137–147.

    Article  CAS  Google Scholar 

  • Harrison, M.J., and van Buuren, M.L. (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629.

    Article  CAS  PubMed  Google Scholar 

  • Hart, M.M., and Reader, R.J. (2005). The role of the external mycelium in early colonization for three arbuscular mycorrhizal fungal species with different colonization strategies. Pedobiologia 49, 269–279.

    Article  Google Scholar 

  • Hubbell, S.P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19, 166–172.

    Article  Google Scholar 

  • Jansa, J., Mozafar, A., Kuhn, G., Anken, T., Ruh, R., Sanders, I.R., and Frossard, E. (2003). Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13, 1164–1176.

    Article  Google Scholar 

  • Jansa, J., Smith, F.A., and Smith, S.E. (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177, 779–789.

    Article  CAS  PubMed  Google Scholar 

  • Jansa, J., Erb, A., Oberholzer, H.R., Šmilauer, P., and Egli, S. (2014). Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23, 2118–2135.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, J.B., and Omland, K.S. (2004). Model selection in ecology and evolution. Trends Ecol Evol 19, 101–108.

    Article  PubMed  Google Scholar 

  • Kaiser, C., Kilburn, M.R., Clode, P.L., Fuchslueger, L., Koranda, M., Cliff, J.B., Solaiman, Z.M., and Murphy, D.V. (2015). Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205, 1537–1551.

    Article  CAS  PubMed  Google Scholar 

  • Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O., Verbruggen, E., Fellbaum, C.R., Kowalchuk, G.A., Hart, M.M., Bago, A., et al. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882.

    Article  CAS  PubMed  Google Scholar 

  • Lekberg, Y., Koide, R.T., Rohr, J.R., Aldrich-wolfe, L., and Morton, J.B. (2007). Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95, 95–105.

    Article  Google Scholar 

  • Levins, R. (1968). Evolution in Changing Environments: Some Theoretical Explorations. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Li, C., Kuyper, T.W., Van Der Werf, W., Zhang, J., Li, H., Zhang, F., and Hoffland, E. (2022). A conceptual framework and an empirical test of complementarity and facilitation with respect to phosphorus uptake by plant species mixtures. Pedosphere 32, 317–329.

    Article  CAS  Google Scholar 

  • Liang, X., **, Y., He, M., Liu, Y., Hua, G., Wang, S., and Tian, G. (2017). Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates. Agr Ecosyst Environ 237, 173–180.

    Article  Google Scholar 

  • Losos, J.B., Leal, M., Glor, R.E., de Queiroz, K., Hertz, P.E., Rodríguez Schettino, L., Chamizo Lara, A., Jackman, T.R., and Larson, A. (2003). Niche lability in the evolution of a Caribbean lizard community. Nature 424, 542–545.

    Article  CAS  PubMed  Google Scholar 

  • Maherali, H., and Klironomos, J.N. (2007). Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748.

    Article  CAS  PubMed  Google Scholar 

  • McLaren, T.I., Smernik, R.J., McLaughlin, M.J., McBeath, T.M., McCaskill, M.R., Robertson, F.A., and Simpson, R.J. (2020). Soil phosphorus pools with addition of fertiliser phosphorus in a long-term grazing experiment. Nutr Cycl Agroecosyst 116, 151–164.

    Article  CAS  Google Scholar 

  • Morin, E., Miyauchi, S., San Clemente, H., Chen, E.C.H., Pelin, A., Providencia, I., Ndikumana, S., Beaudet, D., Hainaut, M., Drula, E., et al. (2019). Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol 222, 1584–1598.

    Article  CAS  PubMed  Google Scholar 

  • Morton, J.B. (1993). Problems and solutions for the integration of glomalean taxonomy, systematic biology, and the study of endomycorrhizal phenomena. Mycorrhiza 2, 97–109.

    Article  Google Scholar 

  • Neumann, G. (2006). Quantitative determination of acid phosphatase activity in the rhizosphere and on the root surface. In: Luster, J., and Finlay, R., eds. Handbook of Methods Used in Rhizosphere Research. Birmensdorf: Swiss Federal Research Institute WSL. 79–85.

    Google Scholar 

  • Nouri, E., Breuillin-Sessoms, F., Feller, U., and Reinhardt, D. (2014). Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 9, e90841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phoenix, G.K., Johnson, D.A., Muddimer, S.P., Leake, J.R., and Cameron, D.D. (2020). Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants. Nat Plants 6, 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Preston, F.W. (1948). The commonness, and rarity, of species. Ecology 29, 254–283.

    Article  Google Scholar 

  • Ragot, S.A., Kertesz, M.A., and Bünemann, E.K. (2015). phoD alkaline phosphatase gene diversity in soil. Appl Environ Microbiol 81, 7281–7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redecker, D., Kodner, R., and Graham, L.E. (2000). Glomalean fungi from the Ordovician. Science 289, 1920–1921.

    Article  CAS  PubMed  Google Scholar 

  • Sato, K., Suyama, Y., Saito, M., and Sugawara, K. (2005). A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassland Sci 51, 179–181.

    Article  CAS  Google Scholar 

  • Schoenau, J.J., and Huang, W.Z. (1991). Anion-exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus. Commun Soil Sci Plant Anal 22, 465–492.

    Article  CAS  Google Scholar 

  • Shi, G., Liu, Y., Johnson, N.C., Olsson, P.A., Mao, L., Cheng, G., Jiang, S., An, L., Du, G., and Feng, H. (2014). Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant Soil 378, 173–188.

    Article  CAS  Google Scholar 

  • Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol Evol 19, 605–611.

    Article  Google Scholar 

  • Slingsby, J.A., and Verboom, G.A. (2006). Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. Am Nat 168, 14–27.

    Article  PubMed  Google Scholar 

  • Tellmann, G. (2006). The E-Method: a highly accurate technique for gene-expression analysis. Nat Methods 3, i–ii.

    Article  CAS  Google Scholar 

  • Thomas, R.L., Sheard, R.W., and Moyer, J.R. (1967). Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron J 59, 240–243.

    Article  CAS  Google Scholar 

  • Thomson, B.D., Clarkson, D.T., and Brain, P. (1990). Kinetics of phosphorus uptake by the germ-tubes of the vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 116, 647–653.

    Article  CAS  Google Scholar 

  • Thonar, C., Schnepf, A., Frossard, E., Roose, T., and Jansa, J. (2011). Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339, 231–245.

    Article  CAS  Google Scholar 

  • Thonar, C., Frossard, E., Šmilauer, P., and Jansa, J. (2014). Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Mol Ecol 23, 733–746.

    Article  PubMed  Google Scholar 

  • Tilman, D. (1982). Resource Competition and Community Structure. Princeton: Princeton University Press.

    Google Scholar 

  • Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., Charron, P., Duensing, N., Frei dit Frey, N., Gianinazzi-Pearson, V., et al. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA 110, 20117–20122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toljander, J.F., Lindahl, B.Ã.D., Paul, L.R., Elfstrand, M., and Finlay, R.D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Vályi, K., Mardhiah, U., Rillig, M.C., and Hempel, S. (2016). Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J 10, 2341–2351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Venice, F., Ghignone, S., Salvioli di Fossalunga, A., Amselem, J., Novero, M., **anan, X., Sędzielewska Toro, K., Morin, E., Lipzen, A., Grigoriev, I.V., et al. (2020). At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environ Microbiol 22, 122–141.

    Article  PubMed  Google Scholar 

  • Verbruggen, E., and Toby Kiers, E. (2010). Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3, 547–560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Jiang, R., Kertesz, M.A., Zhang, F., and Feng, G. (2013). Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.). Soil Biol Biochem 65, 69–74.

    Article  CAS  Google Scholar 

  • Wang, F., Shi, N., Jiang, R., Zhang, F., and Feng, G. (2016). In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere. J Exp Bot 67, 1689–1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb, C.O. (2000). Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156, 145–155.

    Article  PubMed  Google Scholar 

  • Wyss, T., Masclaux, F.G., Rosikiewicz, P., Pagni, M., and Sanders, I.R. (2016). Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis. ISME J 10, 2514–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Jiang, H., Dong, H., and Liu, Y. (2019). A comprehensive census of lake microbial diversity on a global scale. Sci China Life Sci 62, 1320–1331.

    Article  PubMed  Google Scholar 

  • Zhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., and Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210, 1022–1032.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Feng, G., and Declerck, S. (2018a). Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J 12, 2339–2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Shi, N., Fan, J., Wang, F., George, T.S., and Feng, G. (2018b). Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environ Microbiol 20, 2639–2651.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Peng, Y., Zhou, J., George, T.S., and Feng, G. (2020). Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure. Soil Biol Biochem 142, 107724.

    Article  CAS  Google Scholar 

  • Zhou, J.C., Chai, X., Zhang, L., George, T.S., and Feng, G. (2020). Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems 5, e00929–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32272807, U1703232) and the National Key Research and Development Program of China (2017YFD0200200). We thank Lin Zhang (China Agricultural University) and Timothy S. George (The James Hutton Institute, the UK) for their help in writing ideas and language improvement in the early stage of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Feng.

Additional information

Compliance and ethics

The author(s) declare compliance with the Code of Ethics and declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Kuyper, T.W. & Feng, G. A trade-off between space exploration and mobilization of organic phosphorus through associated microbiomes enables niche differentiation of arbuscular mycorrhizal fungi on the same root. Sci. China Life Sci. 66, 1426–1439 (2023). https://doi.org/10.1007/s11427-022-2261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2261-1

Navigation