Log in

Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

CRISPR/Cas-mediated genome editing has greatly facilitated the study of gene function in Streptomyces. However, it could not be efficiently employed in streptomycetes with low homologous recombination (HR) ability. Here, a deaminase-assisted base editor dCas9-CDA-ULstr was developed in Streptomyces, which comprises the nuclease-deficient Cas9 (dCas9), the cytidine deaminase from Petromyzon marinus (PmCDA1), the uracil DNA glycosylase inhibitor (UGI) and the protein degradation tag (LVA tag). Using dCas9-CDA-ULstr, we achieved single-, double- and triple-point mutations (cytosine-to-thymine substitutions) at target sites in Streptomyces coelicolor with efficiency up to 100%, 60% and 20%, respectively. This base editor was also demonstrated to be highly efficient for base editing in the industrial strain, Streptomyces rapamycinicus, which produces the immunosuppressive agent rapamycin. Compared with base editors derived from the cytidine deaminase rAPOBEC1, the PmCDA1-assisted base editor dCas9-CDA-ULstr could edit cytosines preceded by guanosines with high efficiency, which is a great advantage for editing Streptomyces genomes (with high GC content). Collectively, the base editor dCas9-CDA-ULstr could be employed for efficient multiplex genome editing in Streptomyces. Since the dCas9-CDA-ULstr-based genome editing is independent of HR-mediated DNA repair, we believe this technology will greatly facilitate functional genome research and metabolic engineering in Streptomyces strains with weak HR ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arazoe, T., Kondo, A., and Nishida, K. (2018). Targeted nucleotide editing technologies for microbial metabolic engineering. Biotechnol J 13, 1700596.

    Article  Google Scholar 

  • Bérdy, J. (2012). Thoughts and facts about antibiotics: Where we are now and where we are heading. J Antibiot 65, 385–395.

    Article  Google Scholar 

  • Bae, S., Park, J., and Kim, J.S. (2014). Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475.

    Article  CAS  Google Scholar 

  • Baltz, R.H. (2017). Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44, 573–588.

    Article  CAS  Google Scholar 

  • Banno, S., Nishida, K., Arazoe, T., Mitsunobu, H., and Kondo, A. (2018). Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol 3, 423–429.

    Article  CAS  Google Scholar 

  • Barrangou, R., and Horvath, P. (2017). A decade of discovery: CRISPR functions and applications. Nat Microbiol 2, 17092.

    Article  CAS  Google Scholar 

  • Billon, P., Bryant, E.E., Joseph, S.A., Nambiar, T.S., Hayward, S.B., Rothstein, R., and Ciccia, A. (2017). CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol Cell 67, 1068–1079.e4.

    Article  CAS  Google Scholar 

  • Cerdeño, A.M., Bibb, M.J., and Challis, G.L. (2001). Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): New mechanisms for chain initiation and termination in modular multienzymes. Chem Biol 8, 817–829.

    Article  Google Scholar 

  • Chen, W., Zhang, Y., Zhang, Y., Pi, Y., Gu, T., Song, L., Wang, Y., and Ji, Q. (2018). CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. IScience 6, 222–231.

    Article  CAS  Google Scholar 

  • Choi, K.R., and Lee, S.Y. (2016). CRISPR technologies for bacterial systems: Current achievements and future directions. Biotech Adv 34, 1180–1209.

    Article  CAS  Google Scholar 

  • Cobb, R.E., Wang, Y., and Zhao, H. (2014). High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4, 723–728.

    Article  Google Scholar 

  • Eid, A., Alshareef, S., and Mahfouz, M.M. (2018). CRISPR base editors: Genome editing without double-stranded breaks. Biochem J 475, 1955–1964.

    Article  CAS  Google Scholar 

  • Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343–345.

    Article  CAS  Google Scholar 

  • Gu, T., Zhao, S., Pi, Y., Chen, W., Chen, C., Liu, Q., Li, M., Han, D., and Ji, Q. (2018). Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chem Sci 9, 3248–3253.

    Article  CAS  Google Scholar 

  • Hess, G.T., Tycko, J., Yao, D., and Bassik, M.C. (2017). Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell 68, 26–43.

    Article  CAS  Google Scholar 

  • Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278.

    Article  CAS  Google Scholar 

  • Hu, J.H., Miller, S.M., Geurts, M.H., Tang, W., Chen, L., Sun, N., Zeina, C. M., Gao, X., Rees, H.A., Lin, Z., et al. (2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63.

    Article  CAS  Google Scholar 

  • Huang, H., Zheng, G., Jiang, W., Hu, H., and Lu, Y. (2015). One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47, 231–243.

    Article  CAS  Google Scholar 

  • **, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J.L., Zhang, F., et al. (2019). Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 36, eaaw7166.

    Google Scholar 

  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical Streptomyces Genetics. Norwich: John Innes Foundation.

    Google Scholar 

  • Kim, D., Luk, K., Wolfe, S.A., and Kim, J.S. (2019). Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annu Rev Biochem 88, 191–220.

    Article  CAS  Google Scholar 

  • Kim, J.S. (2018). Precision genome engineering through adenine and cytosine base editing. Nat Plants 4, 148–151.

    Article  CAS  Google Scholar 

  • Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424.

    Article  CAS  Google Scholar 

  • Komor, A.C., Zhao, K.T., Packer, M.S., Gaudelli, N.M., Waterbury, A.L., Koblan, L.W., Kim, Y.B., Badran, A.H., and Liu, D.R. (2017). Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 3, eaao4774.

    Article  Google Scholar 

  • Koonin, E.V., Makarova, K.S., and Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37, 67–78.

    Article  CAS  Google Scholar 

  • Kunz, C., Saito, Y., and Schär, P. (2009). DNA repair in mammalian cells. Cell Mol Life Sci 66, 1021–1038.

    Article  CAS  Google Scholar 

  • Li, L., Wei, K., Zheng, G., Liu, X., Chen, S., Jiang, W., Lu, Y., and Kelly, R.M. (2018). CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol 84, e00827–18.

    Article  CAS  Google Scholar 

  • Li, Q., Seys, F.M., Minton, N.P., Yang, J., Jiang, Y., Jiang, W., and Yang, S. (2019). CRISPR-Cas9D10A nickase-assisted base editing in the solvent producer Clostridium beijerinckii. Biotech Bioeng 116, 1475–1483.

    Article  CAS  Google Scholar 

  • Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D. H., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722–736.

    Article  CAS  Google Scholar 

  • Men, K., Duan, X., He, Z., Yang, Y., Yao, S., and Wei, Y. (2017). CRISPR/Cas9-mediated correction of human genetic disease. Sci China Life Sci 60, 447–457.

    Article  CAS  Google Scholar 

  • Molla, K.A., and Yang, Y. (2019). CRISPR/Cas-mediated base editing: Technical considerations and practical applications. Trends Biotech 37, 1121–1142.

    Article  CAS  Google Scholar 

  • Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., Hara, K.Y., et al. (2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729.

    Article  Google Scholar 

  • Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S., Noda, T., Abudayyeh, O.O., Gootenberg, J.S., Mori, H., et al. (2018). Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262.

    Article  CAS  Google Scholar 

  • Rees, H.A., and Liu, D.R. (2018). Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770–788.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., et al. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35, 441–443.

    Article  CAS  Google Scholar 

  • Tong, Y., Charusanti, P., Zhang, L., Weber, T., and Lee, S.Y. (2015). CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4, 1020–1029.

    Article  CAS  Google Scholar 

  • Tong, Y., Robertsen, H.L., Blin, K., Klitgaard, A.K., Weber, T., and Lee, S.Y. (2019). CRISPR-BEST: A highly efficient DSB-free base editor for filamentous actinomycetes. BioRxiv.

  • Wang, Y., Liu, Y., Liu, J., Guo, Y., Fan, L., Ni, X., Zheng, X., Wang, M., Zheng, P., Sun, J., et al. (2018a). MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. Metab Eng 47, 200–210.

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, S., Chen, W., Song, L., Zhang, Y., Shen, Z., Yu, F., Li, M., Ji, Q., and Drake, H.L. (2018b). CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl Environ Microbiol 84, e01834–18.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, Y., Li, J., Yang, Y., Ni, X., Cheng, H., Huang, T., Guo, Y., Ma, H., Zheng, P., et al. (2019). Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum. Biotech Bioeng 116, 3016–3029.

    Article  CAS  Google Scholar 

  • Yoo, Y.J., Hwang, J.Y., Shin, H.L., Cui, H., Lee, J., and Yoon, Y.J. (2015). Characterization of negative regulatory genes for the biosynthesis of rapamycin in Streptomyces rapamycinicus and its application for improved production. J Ind Microbiol Biotechnol 42, 125–135.

    Article  CAS  Google Scholar 

  • Yoo, Y.J., Kim, H., Park, S.R., and Yoon, Y.J. (2017). An overview of rapamycin: From discovery to future perspectives. J Ind Microbiol Biotechnol 44, 537–553.

    Article  CAS  Google Scholar 

  • Zeng, H., Wen, S., Xu, W., He, Z., Zhai, G., Liu, Y., Deng, Z., and Sun, Y. (2015). Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99, 10575–10585.

    Article  CAS  Google Scholar 

  • Zhang, M.M., Wong, F.T., Wang, Y., Luo, S., Lim, Y.H., Heng, E., Yeo, W. L., Cobb, R.E., Enghiad, B., Ang, E.L., et al. (2017). CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13, 607–609.

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, L., Liu, M., and Li, D. (2017). CRISPR/Cas9 system: A powerful technology for in vivo and ex vivo gene therapy. Sci China Life Sci 60, 468–475.

    Article  CAS  Google Scholar 

  • Zhao, Y., Li, L., Zheng, G., Jiang, W., Deng, Z., Wang, Z., and Lu, Y. (2018). CRISPR/dCas9-mediated multiplex gene repression in Streptomyces. Biotechnol J 13, 1800121.

    Article  Google Scholar 

  • Zheng, K., Wang, Y., Li, N., Jiang, F.F., Wu, C.X., Liu, F., Chen, H.C., and Liu, Z.F. (2018). Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. Commun Biol 1, 32.

    Article  Google Scholar 

  • Zhong, Z., Guo, J., Deng, L., Chen, L., Wang, J., Li, S., Xu, W., Deng, Z., and Sun, Y. (2019). Base editing in Streptomyces with Cas9-deaminase fusions. BioRxiv.

  • Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y., and Yang, H. (2019). Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 148, eaav9973.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Drug Innovation Major Project (2018ZX09711001-006-012), the National Natural Science Foundation of China (31770088, 31570072 and 31430004), the Science and Technology Commission of Shanghai Municipality (18ZR1446700), the Derivative Bank of Chinese Biological Resources, CAS (ZSYS-016), and Shanghai Engineering Research Center of Plant Germplasm Resources (17DZ2252700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Wang or Yinhua Lu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Tian, J., Zheng, G. et al. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. Sci. China Life Sci. 63, 1053–1062 (2020). https://doi.org/10.1007/s11427-019-1559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1559-y

Keywords

Navigation