Log in

Synergistic asymmetric diarylation of tethered alkenes via C–H functionalization of simple (hetero)arenes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

By virtue of the atom- and step-economy, utilization of simple arenes as a supplant of pre-prepared aryl metal species or aryl halides for the synthesis of arylated chiral molecules has attracted great attention from the synthetic community. While transition-metal-catalyzed enantioselective diarylation of tethered alkenes has been employed to prepare important chiral cyclic compounds, the direct use of simple arenes as aryl precursors is still underdeveloped, probably due to the difficulties in the effective control of the reactivity, site-selectivity and/or enantioselectivity. Herein we report an asymmetric Pd/Ag dual metal catalytic system for the non-directed, site- and enantioselective domino Heck/intermolecular C–H functionalization of arenes. Mechanistic studies showed that Pd and Ag act in cooperation in the catalysis and the chiral bisphosphine ligand plays a bifunctional role, i.e., assisting the silver species in the cleavage of the aryl C–H bond, while inducing the enantioselectivity on direct complexation with palladium. This method provides an efficient approach to the corresponding chiral oxindoles with good enantiomeric excesses from a broad scope of arenes, including fluoroarenes, heteroarenes and several complex products derived from medicines or natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dounay AB, Overman LE. Chem Rev, 2003, 103: 2945–2964

    Article  CAS  PubMed  Google Scholar 

  2. ** Y, Li Y, Zhu J, Kong W. Angew Chem Int Ed, 2019, 58: 1562–1573

    Article  CAS  Google Scholar 

  3. Marchese AD, Larin EM, Mirabi B, Lautens M. Acc Chem Res, 2020, 53: 1605–1619

    Article  CAS  PubMed  Google Scholar 

  4. Reznikov AN, Ashatkina MA, Klimochkin YN. Org Biomol Chem, 2021, 19: 5673–5701

    Article  CAS  PubMed  Google Scholar 

  5. Liang RX, Jia YX. Acc Chem Res, 2022, 55: 734–745

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Han Y, Zhang Y, Liang Y. Adv Synth Catal, 2023, 365: 2436–2466

    Article  CAS  Google Scholar 

  7. Pan Q, ** Y, Kong W. Acc Chem Res, 2023, 56: 515–535

    Article  CAS  PubMed  Google Scholar 

  8. Zou L, Gao Y, Zhang Q, Ye X, **e T, Wang L, Ye Y. Chem An Asian J, 2023, 18: e202300721

    Article  Google Scholar 

  9. Pellissier H. Adv Synth Catal, 2023, 365: 620–681

    Article  CAS  Google Scholar 

  10. Aho JE, Pihko PM, Rissa TK. Chem Rev, 2005, 105: 4406–4440

    Article  CAS  PubMed  Google Scholar 

  11. Booker JEM, Boto A, Churchill GH, Green CP, Ling M, Meek G, Prabhakaran J, Sinclair D, Blake AJ, Pattenden G. Org Biomol Chem, 2006, 4: 4193–4205

    Article  CAS  PubMed  Google Scholar 

  12. Costanzo MJ, Yabut SC, Zhang HC, White KB, de Garavilla L, Wang Y, Minor LK, Tounge BA, Barnakov AN, Lewandowski F, Milligan C, Spurlino JC, Abraham WM, Boswell-Smith V, Page CP, Maryanoff BE. Bioorg Med Chem Lett, 2008, 18: 2114–2121

    Article  CAS  PubMed  Google Scholar 

  13. Diaz P, Phatak S, Xu J, Fronczek F, Astruc-Diaz F, Thompson C, Cavasotto C, Naguib M. ChemMedChem, 2009, 4: 1615–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheppard TD. J Chem Res, 2011, 35: 377–385

    Article  CAS  Google Scholar 

  15. Luo Z, Naguib M. Tetrahedron Lett, 2012, 53: 3316–3318

    Article  CAS  Google Scholar 

  16. Velázquez F, Venkatraman S, Lesburg CA, Duca J, Rosenblum SB, Kozlowski JA, Njoroge FG. Org Lett, 2012, 14: 556–559

    Article  PubMed  Google Scholar 

  17. Li Q, Zhang H. Chin J Org Chem, 2017, 37: 1629–1652

    Article  CAS  Google Scholar 

  18. Ilya E, Kulikova L, Van der Eycken EV, Voskressensky L. ChemistryOpen, 2018, 7: 914–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Z, Pitchakuntla M, Jia Y. Nat Prod Rep, 2019, 36: 666–690

    Article  CAS  PubMed  Google Scholar 

  20. You W, Brown MK. J Am Chem Soc, 2015, 137: 14578–14581

    Article  CAS  PubMed  Google Scholar 

  21. Wang K, Ding Z, Zhou Z, Kong W. J Am Chem Soc, 2018, 140: 12364–12368

    Article  CAS  PubMed  Google Scholar 

  22. Ju B, Chen S, Kong W. Chem Commun, 2019, 55: 14311–14314

    Article  CAS  Google Scholar 

  23. Zhang Z, Xu B, Wu L, Wu Y, Qian Y, Zhou L, Liu Y, Zhang J. Angew Chem Int Ed, 2019, 58: 14653–14659

    Article  CAS  Google Scholar 

  24. Whyte A, Bajohr J, Arora R, Torelli A, Lautens M. Angew Chem Int Ed, 2021, 60: 20231–20236

    Article  CAS  Google Scholar 

  25. Hwang SJ, Cho SH, Chang S. J Am Chem Soc, 2008, 130: 16158–16159

    Article  CAS  PubMed  Google Scholar 

  26. Sharma UK, Sharma N, Kumar Y, Singh BK, Van der Eycken EV. Chem Eur J, 2016, 22: 481–485

    Article  PubMed  Google Scholar 

  27. Wu XX, Chen WL, Shen Y, Chen S, Xu PF, Liang YM. Org Lett, 2016, 18: 1784–1787

    Article  CAS  PubMed  Google Scholar 

  28. Kong W, Wang Q, Zhu J. J Am Chem Soc, 2015, 137: 16028–16031

    Article  CAS  PubMed  Google Scholar 

  29. Tong S, Limouni A, Wang Q, Wang M, Zhu J. Angew Chem Int Ed, 2017, 56: 14192–14196

    Article  CAS  Google Scholar 

  30. Bao X, Wang Q, Zhu J. Angew Chem Int Ed, 2017, 56: 9577–9581

    Article  CAS  Google Scholar 

  31. Ma Z, Sun L, Zhou JS. Chem Sci, 2023, 14: 3010–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fang C, Wang QP, Xu B, Zhang ZM, Zhang J. Chem Sci, 2024, 15: 5573–5580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen X, Engle K, Wang D, Yu J. Angew Chem Int Ed, 2009, 48: 5094–5115

    Article  CAS  Google Scholar 

  34. Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew Chem Int Ed, 2012, 51: 10236–10254

    Article  CAS  Google Scholar 

  35. Hartwig JF, Larsen MA. ACS Cent Sci, 2016, 2: 281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong S-M, Kwong F-Y. In: Strategies for Palladium-Catalyzed Non-Directed and Directed C–H Bond Functionalization. Kapdi AR, Maiti D, Eds. Amsterdam: Elsevier, 2017. 49–166

    Chapter  Google Scholar 

  37. Kaltenberger S, van Gemmeren M. Acc Chem Res, 2023, 56: 2459–2472

    Article  CAS  PubMed  Google Scholar 

  38. Ricci P, Krämer K, Cambeiro XC, Larrosa I. J Am Chem Soc, 2013, 135: 13258–13261

    Article  CAS  PubMed  Google Scholar 

  39. Ricci P, Krämer K, Larrosa I. J Am Chem Soc, 2014, 136: 18082–18086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whitaker D, Burés J, Larrosa I. J Am Chem Soc, 2016, 138: 8384–8387

    Article  CAS  PubMed  Google Scholar 

  41. Colletto C, Panigrahi A, Fernández-Casado J, Larrosa I. J Am Chem Soc, 2018, 140: 9638–9643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Batuecas M, Luo J, Gergelitsová I, Krämer K, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal, 2019, 9: 5268–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Panigrahi A, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal, 2020, 10: 2100–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee SY, Hartwig JF. J Am Chem Soc, 2016, 138: 15278–15284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tlahuext-Aca A, Lee SY, Sakamoto S, Hartwig JF. ACS Catal, 2021, 11: 1430–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lotz MD, Camasso NM, Canty AJ, Sanford MS. Organometallics, 2017, 36: 165–171

    Article  CAS  Google Scholar 

  47. Liu KH, Hu GQ, Wang CX, Sheng FF, Bai JW, Gu JG, Zhang HH. Org Lett, 2021, 23: 5626–5630

    Article  CAS  PubMed  Google Scholar 

  48. Yao J, Bai J, Kang X, Zhu M, Guo Y, Wang X. Nanoscale, 2023, 15: 3560–3565

    Article  CAS  PubMed  Google Scholar 

  49. Yao J, Shao L, Huo X, Wang X. Sci China Chem, 2024, 67: 882–889

    Article  CAS  Google Scholar 

  50. Platt GMH, Aguiar PM, Athavan G, Bray JTW, Scott NWJ, Fairlamb IJS, Perutz RN. Organometallics, 2023, 42: 2378–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marti C, Carreira EM. Eur J Org Chem, 2003, 2003(12): 2209–2219

    Article  Google Scholar 

  52. Galliford C, Scheidt K. Angew Chem Int Ed, 2007, 46: 8748–8758

    Article  CAS  Google Scholar 

  53. Singh GS, Desta ZY. Chem Rev, 2012, 112: 6104–6155

    Article  CAS  PubMed  Google Scholar 

  54. Yu B, **ng H, Yu DQ, Liu HM. Beilstein J Org Chem, 2016, 12: 1000–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaur M, Singh M, Chadha N, Silakari O. Eur J Med Chem, 2016, 123: 858–894

    Article  CAS  PubMed  Google Scholar 

  56. Saraswat P, Jeyabalan G, Hassan MZ, Rahman MU, Nyola NK. Synth Commun, 2016, 46: 1643–1664

    Article  CAS  Google Scholar 

  57. Ye N, Chen H, Wold EA, Shi PY, Zhou J. ACS Infect Dis, 2016, 2: 382–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dhokne P, Sakla AP, Shankaraiah N. Eur J Med Chem, 2021, 216: 113334

    Article  CAS  PubMed  Google Scholar 

  59. Khetmalis YM, Shivani M, Murugesan S, Chandra Sekhar KVG. Biomed Pharmacother, 2021, 141: 111842

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Han Z, Wang Z, Ding K. Acc Chem Res, 2021, 54: 668–684

    Article  CAS  PubMed  Google Scholar 

  61. Lapointe D, Fagnou K. Chem Lett, 2010, 39: 1118–1126

    Article  Google Scholar 

  62. Carrow BP, Sampson J, Wang L. Israel J Chem, 2020, 60: 230–258

    Article  CAS  Google Scholar 

  63. Clot E, Mégret C, Eisenstein O, Perutz RN. J Am Chem Soc, 2009, 131: 7817–7827

    Article  CAS  PubMed  Google Scholar 

  64. Hammarback LA, Bishop AL, Jordan C, Athavan G, Eastwood JB, Burden TJ, Bray JTW, Clarke F, Robinson A, Krieger JP, Whitwood A, Clark IP, Towrie M, Lynam JM, Fairlamb IJS. ACS Catal, 2022, 12: 1532–1544

    Article  CAS  Google Scholar 

  65. Clot E, Eisenstein O, Jasim N, Macgregor SA, McGrady JE, Perutz RN. Acc Chem Res, 2011, 44: 333–348

    Article  CAS  PubMed  Google Scholar 

  66. Bay KL, Yang YF, Houk KN. J Organomet Chem, 2018, 864: 19–25

    Article  CAS  Google Scholar 

  67. Mudarra ÁL, Martínez de Salinas S, Pérez-Temprano MH. Org Biomol Chem, 2019, 17: 1655–1667

    Article  CAS  PubMed  Google Scholar 

  68. Bhattacharya T, Dutta S, Maiti D. ACS Catal, 2021, 11: 9702–9714

    Article  CAS  Google Scholar 

  69. Athavan G, Tanner TFN, Whitwood AC, Fairlamb IJS, Perutz RN. Organometallics, 2022, 41: 3175–3184

    Article  CAS  Google Scholar 

  70. Marchese AD, Durant AG, Reid CM, Jans C, Arora R, Lautens M. J Am Chem Soc, 2022, 144: 20554–20560

    Article  CAS  PubMed  Google Scholar 

  71. Hoff LV, Chesnokov GA, Linden A, Gademann K. ACS Catal, 2022, 12: 9226–9237

    Article  CAS  Google Scholar 

  72. Tang P, Furuya T, Ritter T. J Am Chem Soc, 2010, 132: 12150–12154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohkouchi M, Masui D, Yamaguchi M, Yamagishi T. J Mol Catal A-Chem, 2001, 170: 1–15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1500100), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0610000), the National Natural Science Foundation of China (92256303, 22171278, 21821002), the Shanghai Science and Technology Committee (23ZR1482400) and the Natural Science Foundation of Ningbo (2023J034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoming Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2024_2059_MOESM1_ESM.pdf

Silver and Palladium Synergistic Asymmetric Diarylation of Tethered Alkenes via C-H Functionalization of Simple (Hetero)Arenes

Supplementary material, approximately 474 KB.

Supplementary material, approximately 120 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Zhao, C., Shao, L. et al. Synergistic asymmetric diarylation of tethered alkenes via C–H functionalization of simple (hetero)arenes. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-2059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-024-2059-y

Navigation