Log in

Construction of LiCl/LiF/LiZn hybrid SEI interface achieving high-performance sulfide-based all-solid-state lithium metal batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Sulfide-based all-solid-state lithium metal batteries (ASSLMBs) have received extensive attention due to their high energy density and high safety, while the poor interface stability between sulfide electrolyte and lithium metal anode limits their development. Hence, a hybrid SEI (LICl/LiF/LiZn) was constructed at the interface between Li5.5PS4.5Cl1.5 sulfide electrolyte and lithium metal. The LiCl and LiF interface phases with high interface energy effectively induce the uniform deposition of Li+ and reduce the overpotential of Li+ deposition, while the LiZn alloy interface phase accelerates the diffusion of lithium ions. The synergistic effect of the above functional interface phases inhibits the growth of lithium dendrites and stabilizes the interface between the sulfide electrolyte and lithium metal. The hybrid SEI strategy exhibits excellent electrochemical performance on symmetric batteries and all-solid-state batteries. The symmetrical cell exhibits stable cycling performance over long duration over 500 h at 1.0 mA cm−2. Moreover, the LiNbO3@NCM712/Li5.5PS4.5Cl1.5/Li-10%ZnF2 battery exhibits excellent cycle stability at a high rate of 0.5 C, with a capacity retention rate of 76.4% after 350 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang H, Yu Z, Chen H, Zhou Y, Huang X, Tian B. J Energy Chem, 2023, 79: 348–356

    Article  CAS  Google Scholar 

  2. Luo Q, Ming L, Zhang D, Wei C, Wu Z, Jiang Z, Liu C, Liu S, Cao K, Zhang L, Yu C, Cheng S. Energy Mater Adv, 2023, 4: 0065

    Article  CAS  Google Scholar 

  3. Tufail MK, Zhai P, Jia M, Zhao N, Guo X. Energy Mater Adv, 2023, 4: 0015

    Article  CAS  Google Scholar 

  4. Wei C, Yu C, Chen S, Chen S, Peng L, Wu Y, Li S, Cheng S, **e J. Electrochim Acta, 2023, 438: 141545

    Article  CAS  Google Scholar 

  5. Luo Q, Yu C, Wei C, Chen S, Chen S, Jiang Z, Peng L, Cheng S, **e J. Ceramics Int, 2023, 49: 11485–11493

    Article  CAS  Google Scholar 

  6. Xu J, **ang S, Yi C, Liu X, An L, Wang Z, Jiang H, Cheng GJ. Energy Mater Adv, 2023, 4: 0012

    Article  Google Scholar 

  7. Chang X, Zhao YM, Yuan B, Fan M, Meng Q, Guo YG, Wan LJ. Sci China Chem, 2024, 67: 43–66

    Article  CAS  Google Scholar 

  8. **n S, Zhang X, Wang L, Yu H, Chang X, Zhao YM, Meng Q, Xu P, Zhao CZ, Chen J, Lu H, Kong X, Wang J, Chen K, Huang G, Zhang X, Su Y, **ao Y, Chou SL, Zhang S, Guo Z, Du A, Cui G, Yang G, Zhao Q, Dong L, Zhou D, Kang F, Hong H, Zhi C, Yuan Z, Li X, Mo Y, Zhu Y, Yu D, Lei X, Zhao J, Wang J, Su D, Guo YG, Zhang Q, Chen J, Wan LJ. Sci China Chem, 2024, 67: 13–42

    Article  CAS  Google Scholar 

  9. Ferraresi G, Uhlenbruck S, Tsai CL, Novák P, Villevieille C. Batteries Supercaps, 2020, 3: 557–565

    Article  CAS  Google Scholar 

  10. van den Broek J, Afyon S, Rupp JLM. Adv Energy Mater, 2016, 6: 1600736

    Article  Google Scholar 

  11. Wei C, Yu C, Peng L, Zhang Z, Xu R, Wu Z, Liao C, Zhang W, Zhang L, Cheng S, **e J. Mater Adv, 2022, 3: 1047–1054

    Article  CAS  Google Scholar 

  12. Wei C, Yu D, Xu X, Wang R, Li J, Lin J, Chen S, Zhang L, Yu C. Chem — An Asian J, 2023, 18: e202300304

    Article  CAS  Google Scholar 

  13. Wang Z, Shen L, Deng S, Cui P, Yao X. Adv Mater, 2021, 33: 2100353

    Article  CAS  Google Scholar 

  14. Ge Z, Liu X, Zou X, Zhan Y, Luo Y. J Appl Polym Sci, 2021, 138: 50945

    Article  CAS  Google Scholar 

  15. Xu P, Shuang ZY, Zhao CZ, Li X, Fan LZ, Chen A, Chen H, Kuzmina E, Karaseva E, Kolosnitsyn V, Zeng X, Dong P, Zhang Y, Wang M, Zhang Q. Sci China Chem, 2024, 67: 67–86

    Article  Google Scholar 

  16. Chen S, Yu C, Wei C, Jiang Z, Zhang Z, Peng L, Cheng S, **e J. Energy Mater Adv, 2023, 4: 0019

    Article  CAS  Google Scholar 

  17. Chen S, Yu C, Luo Q, Wei C, Li L, Li G, Cheng S, **e J. Acta Physico Chim Sin, 2022, 39: 2210032

    Article  Google Scholar 

  18. Yang M, Chen L, Li H, Wu F. Energy Mater Adv, 2022, 2022: 9842651

    Google Scholar 

  19. Wei C, Liu X, Yu C, Chen S, Chen S, Cheng S, **e J. Chin Chem Lett, 2023, 34: 107859

    Article  CAS  Google Scholar 

  20. Wei C, Chen S, Yu C, Wang R, Luo Q, Chen S, Wu Z, Liu C, Cheng S, **e J. Appl Mater Today, 2023, 31: 101770

    Article  Google Scholar 

  21. Wu J, Liu S, Han F, Yao X, Wang C. Adv Mater, 2021, 33: 2000751

    Article  CAS  Google Scholar 

  22. Liang J, Li X, Wang C, Kim JT, Yang R, Wang J, Sun X. Energy Mater Adv, 2023, 4: 0021

    Article  CAS  Google Scholar 

  23. Wang Y, Wang Z, Wu D, Niu Q, Lu P, Ma T, Su Y, Chen L, Li H, Wu F. eScience, 2022, 2: 537–545

    Article  Google Scholar 

  24. Peng L, Yu C, Zhang Z, Ren H, Zhang J, He Z, Yu M, Zhang L, Cheng S, **e J. Chem Eng J, 2022, 430: 132896

    Article  CAS  Google Scholar 

  25. Yu C, Zhao F, Luo J, Zhang L, Sun X. Nano Energy, 2021, 83: 105858

    Article  CAS  Google Scholar 

  26. Arnold W, Buchberger DA, Li Y, Sunkara M, Druffel T, Wang H. J Power Sources, 2020, 464: 228158

    Article  CAS  Google Scholar 

  27. Zhao F, Liang J, Yu C, Sun Q, Li X, Adair K, Wang C, Zhao Y, Zhang S, Li W, Deng S, Li R, Huang Y, Huang H, Zhang L, Zhao S, Lu S, Sun X. Adv Energy Mater, 2020, 10: 1903422

    Article  CAS  Google Scholar 

  28. Chen T, Zhang L, Zhang Z, Li P, Wang H, Yu C, Yan X, Wang L, Xu B. ACS Appl Mater Interfaces, 2019, 11: 40808–40816

    Article  CAS  PubMed  Google Scholar 

  29. Yu C, Ganapathy S, Eck ERH, Wang H, Basak S, Li Z, Wagemaker M. Nat Commun, 2017, 8: 1086

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu Z, Yu C, Wei C, Jiang Z, Liao C, Chen S, Chen S, Peng L, Cheng S, **e J. Chem Eng J, 2023, 466: 143304

    Article  CAS  Google Scholar 

  31. Wei C, Wang R, Wu Z, Luo Q, Jiang Z, Ming L, Zhang L, Lu H, Li G, Li L, Yu C, Cheng S. Chem Eng J, 2023, 476: 146531

    Article  CAS  Google Scholar 

  32. Wu Z, Chen S, Yu C, Wei C, Peng L, Wang HL, Cheng S, **e J. Chem Eng J, 2022, 442: 136346

    Article  CAS  Google Scholar 

  33. Liu H, Zhu Q, Liang Y, Wang C, Li D, Zhao X, Gao L, Fan LZ. Chem Eng J, 2023, 462: 142183

    Article  CAS  Google Scholar 

  34. Liu G, Weng W, Zhang Z, Wu L, Yang J, Yao X. Nano Lett, 2020, 20: 6660–6665

    Article  CAS  PubMed  Google Scholar 

  35. Fan Q, Zhang W, ** Y, Zhang D, Meng X, Peng W, Wang J, Mo J, Liu K, Liu L, Li M. Chem Eng J, 2023, 477: 147179

    Article  CAS  Google Scholar 

  36. Liu H, Zhu Q, Wang C, Wang G, Liang Y, Li D, Gao L, Fan LZ. Adv Funct Mater, 2022, 32: 2203858

    Article  CAS  Google Scholar 

  37. Ge Z, Chen N, Wang R, Ma R, Fan B, Le coq D, Zhang X, Ma H, Xue B. Chem Eng J, 2023, 467: 143409

    Article  CAS  Google Scholar 

  38. Wang JC, Wang PF, Yi TF. Energy Storage Mater, 2023, 62: 102958

    Article  Google Scholar 

  39. Li J, Li Y, Cheng J, Sun Q, Dai L, Ci N, Li D, Ci L. J Power Sources, 2022, 518: 230739

    Article  CAS  Google Scholar 

  40. Takahashi M, Watanabe T, Yamamoto K, Ohara K, Sakuda A, Kimura T, Yang S, Nakanishi K, Uchiyama T, Kimura M, Hayashi A, Tatsumisago M, Uchimoto Y. Chem Mater, 2021, 33: 4907–4914

    Article  CAS  Google Scholar 

  41. Wu M, Li M, ** Y, Chang X, Zhao X, Gu Z, Liu G, Yao X. J Energy Chem, 2023, 79: 272–278

    Article  CAS  Google Scholar 

  42. Pang B, Gan Y, **a Y, Huang H, He X, Zhang W. Front Chem, 2022, 10: 837978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei C, Yu C, Wang R, Peng L, Chen S, Miao X, Cheng S, **e J. J Power Sources, 2023, 559: 232659

    Article  CAS  Google Scholar 

  44. Wang C, Zhao Y, Sun Q, Li X, Liu Y, Liang J, Li X, Lin X, Li R, Adair KR, Zhang L, Yang R, Lu S, Sun X. Nano Energy, 2018, 53: 168–174

    Article  CAS  Google Scholar 

  45. Xu R, Han F, Ji X, Fan X, Tu J, Wang C. Nano Energy, 2018, 53: 958–966

    Article  CAS  Google Scholar 

  46. Yang S, Takahashi M, Yamamoto K, Ohara K, Watanabe T, Uchiyama T, Takami T, Sakuda A, Hayashi A, Tatsumisago M, Uchimoto Y. Solid State Ion, 2022, 377: 115869

    Article  CAS  Google Scholar 

  47. Xue T, Qian J, Guo X, Chen Y, Yu K, Yu T, Li Y, Li L, Wu F, Chen R. Sci China Chem, 2023, 66: 2121–2129

    Article  CAS  Google Scholar 

  48. Ni Y, Huang C, Liu H, Liang Y, Fan LZ. Adv Funct Mater, 2022, 32: 2205998

    Article  CAS  Google Scholar 

  49. Jiang Z, Peng H, Liu Y, Li Z, Zhong Y, Wang X, **a X, Gu C, Tu J. Adv Energy Mater, 2021, 11: 2101521

    Article  CAS  Google Scholar 

  50. Wang C, Hao J, Wu J, Shi H, Fan L, Wang J, Wang Z, Wang Z, Yang L, Gao Y, Yan X, Gu Y. Adv Funct Mater, 2024, 34: 2313308

    Article  CAS  Google Scholar 

  51. Wu ZW, Tyan SL, Chen HH, Huang JCA, Huang YC, Lee CR, Mo TS. Superlattices MicroStruct, 2017, 107: 38–43

    Article  CAS  Google Scholar 

  52. Li Z, Jiang X, Lu G, Deng T, Wang R, Wei J, Zheng W, Yang Z, Tang D, Zhao Q, Hu X, Xu C, Zhou X. Chem Eng J, 2023, 465: 142895

    Article  CAS  Google Scholar 

  53. Peng L, Chen S, Yu C, Wei C, Liao C, Wu Z, Wang HL, Cheng S, **e J. ACS Appl Mater Interfaces, 2022, 14: 4179–4185

    Article  CAS  PubMed  Google Scholar 

  54. Wei C, Liu C, **ao Y, Wu Z, Luo Q, Jiang Z, Wang Z, Zhang L, Cheng S, Yu C. Adv Funct Mater, 2024, 34: 2314306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFB2500200) and the National Natural Science Foundation of China (52177214). This work is also supported by China Fujian Energy Devices Science and Technology Innovation Laboratory Open Fund (21C-OP202211). We gratefully acknowledge HUST’s Analytical and Testing Center for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Yu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2024_2055_MOESM1_ESM.pdf

Construction of LiCl/LiF/LiZn Hybrid SEI Interface Achieving High-performance Sulfide-Based All-Solid-State Lithium Metal Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., **ao, Y., Wu, Z. et al. Construction of LiCl/LiF/LiZn hybrid SEI interface achieving high-performance sulfide-based all-solid-state lithium metal batteries. Sci. China Chem. 67, 1990–2001 (2024). https://doi.org/10.1007/s11426-024-2055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-024-2055-4

Navigation