Log in

Copper-catalyzed asymmetric dearomatizing amination of 2-naphthols: Csp2–N coupling via 1,3-reductive elimination

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An efficient catalytic asymmetric dearomatizing amination of 2-naphthols and phenols catalyzed by N,N′-dioxide-copper(I) complex as a chiral catalyst was presented. A variety of optically active β-naphthalenone compounds with a nitrogen-containing quaternary carbon stereocenter were obtained with high yield and enantioselectivity under mild reaction conditions. Mechanistic studies indicated that this Csp2–N dearomatizing coupling proceeds via 1,3-reductive elimination of phenolate-CuIII-amino intermediate in five-membered ring transition states. The origin of enantioselectivity has also been elucidated based on density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Randolph JT, Flentge CA, Huang PP, Hutchinson DK, Klein LL, Lim HB, Mondal R, Reisch T, Montgomery DA, Jiang WW, Masse SV, Hernandez LE, Henry RF, Liu Y, Koev G, Kati WM, Stewart KD, Beno DWA, Molla A, Kempf DJ. J Med Chem, 2009, 52: 3174–3183

    Article  CAS  PubMed  Google Scholar 

  2. Wu WT, Zhang L, You SL. Chem Soc Rev, 2016, 45: 1570–1580

    Article  CAS  PubMed  Google Scholar 

  3. **g C, Farndon JJ, Bower JF. Chem Record, 2021, 21: 2909–2926

    Article  CAS  Google Scholar 

  4. Sarkar D, Ghosh MK, Rout N, Kuila P. New J Chem, 2017, 41: 3715–3718

    Article  CAS  Google Scholar 

  5. Scheffler G, Seike H, Sorensen EJ. Angew Chem Int Ed, 2000, 39: 4593–4596

    Article  CAS  Google Scholar 

  6. Canesi S, Bouchu D, Ciufolini MA. Org Lett, 2005, 7: 175–177

    Article  CAS  PubMed  Google Scholar 

  7. Jain N, Ciufolini M. Synlett, 2015, 26: 631–634

    Article  CAS  Google Scholar 

  8. Liang H, Ciufolini MA. Org Lett, 2010, 12: 1760–1763

    Article  CAS  PubMed  Google Scholar 

  9. Yi JC, Tu HF, You SL. Org Biomol Chem, 2018, 16: 8700–8703

    Article  CAS  PubMed  Google Scholar 

  10. Wardrop DJ, Burge MS. J Org Chem, 2005, 70: 10271–10284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. **a ZL, Zheng C, Xu RQ, You SL. Nat Commun, 2019, 10: 3150

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang SG, Yin Q, Zhuo CX, You SL. Angew Chem, 2015, 127: 657–660

    Article  Google Scholar 

  13. Lian X, Lin L, Wang G, Liu X, Feng X. Chem Eur J, 2015, 21: 17453–17458

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Jia SK, **ao X, Wang MC, Huang L, Mei GJ. Org Lett, 2023, 25: 4740–4744

    Article  CAS  PubMed  Google Scholar 

  15. Maji U, Mondal BD, Guin J. Org Lett, 2023, 25: 2323–2327

    Article  CAS  PubMed  Google Scholar 

  16. Hwang Y, Park Y, Kim YB, Kim D, Chang S. Angew Chem Int Ed, 2018, 57: 13565–13569

    Article  CAS  Google Scholar 

  17. Yu JS, Espinosa M, Noda H, Shibasaki M. J Am Chem Soc, 2019, 141: 10530–10537

    Article  CAS  PubMed  Google Scholar 

  18. Yi J, Wu Z, You S. Eur J Org Chem, 2019, 2019(33): 5736–5739

    Article  CAS  Google Scholar 

  19. Tanaka K, Mori Y, Narasaka K. Chem Lett, 2004, 33: 26–27

    Article  CAS  Google Scholar 

  20. Ma XF, Farndon JJ, Young TA, Fey N, Bower JF. Angew. Chem. Int. Ed., 2017, 56: 14531–14535

    Article  CAS  Google Scholar 

  21. Farndon JJ, Ma X, Bower JF. J Am Chem Soc, 2017, 139: 14005–14008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jia L, Gao S, **e J, Luo M. Adv Synth Catal, 2016, 358: 3840–3846

    Article  CAS  Google Scholar 

  23. Gu QS, Li ZL, Liu XY. Acc Chem Res, 2020, 53: 170–181

    Article  CAS  PubMed  Google Scholar 

  24. Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science, 2016, 351: 681–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen C, Peters JC, Fu GC. Nature, 2021, 596: 250–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cho H, Suematsu H, Oyala PH, Peters JC, Fu GC. J Am Chem Soc, 2022, 144: 4550–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen JJ, Fang JH, Du XY, Zhang JY, Bian JQ, Wang FL, Luan C, Liu WL, Liu JR, Dong XY, Li ZL, Gu QS, Dong Z, Liu XY. Nature, 2023, 618: 294–300

    Article  CAS  PubMed  Google Scholar 

  28. Chen JJ, Zhang JY, Fang JH, Du XY, **a HD, Cheng B, Li N, Yu ZL, Bian JQ, Wang FL, Zheng JJ, Liu WL, Gu QS, Li ZL, Liu XY. J Am Chem Soc, 2023, 145: 14686–14696

    Article  CAS  PubMed  Google Scholar 

  29. Zhang YF, Dong XY, Cheng JT, Yang NY, Wang LL, Wang FL, Luan C, Liu J, Li ZL, Gu QS, Liu XY. J Am Chem Soc, 2021, 143: 15413–15419

    Article  CAS  PubMed  Google Scholar 

  30. Zhang YF, Wang JH, Yang NY, Chen Z, Wang LL, Gu QS, Li ZL, Liu XY. Angew Chem Int Ed, 2023, 62: e202302983

    Article  CAS  Google Scholar 

  31. Huang C, Wan Z, Zhu A, Chen C. Chin J Chem, 2024, 42: 1161–1174

    Article  CAS  Google Scholar 

  32. Dai L, Chen Y, **ao L, Zhou Q. Angew Chem Int Ed, 2023, 62: e202304427

    Article  CAS  Google Scholar 

  33. Cheng X, Chang X, Yang Y, Zhang Z, Li J, Li Y, Zhao W, Chung LW, Teng H, Dong XQ, Wang CJ. Sci China Chem, 2023, 66: 3193–3204

    Article  CAS  Google Scholar 

  34. Yao ZL, Wang L, Shao NQ, Guo YL, Wang DH. ACS Catal, 2019, 9: 7343–7349

    Article  CAS  Google Scholar 

  35. Gao Y, Li H, Yang S, Huo Y, Chen Q, Li X, Wang Z, Hu XQ. Sci China Chem, 2024, 67: 595–603

    Article  CAS  Google Scholar 

  36. Bai L, Luo X, Ge Y, Wang H, Liu J, Wang Y, Luan X. CCS Chem, 2022, 4: 1054–1064

    Article  CAS  Google Scholar 

  37. Zhao X, Liu X, Mei H, Guo J, Lin L, Feng X. Angew Chem Int Ed, 2015, 54: 4032–4035

    Article  CAS  Google Scholar 

  38. Wang L, Zhou Y, Su Z, Zhang F, Cao W, Liu X, Feng X. Angew Chem Int Ed, 2022, 61: e202211785

    Article  CAS  Google Scholar 

  39. Zhang Y, Liao Y, Liu X, Xu X, Lin L, Feng X. Chem Sci, 2017, 8: 6645–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ge S, Kang T, Lin L, Zhang X, Zhao P, Liu X, Feng X. Chem Commun, 2017, 53: 11759–11762

    Article  CAS  Google Scholar 

  41. Liu W, Pu M, He J, Zhang T, Dong S, Liu X, Wu YD, Feng X. J Am Chem Soc, 2021, 143: 11856–11863

    Article  CAS  PubMed  Google Scholar 

  42. He Q, Pu MP, Jiang Z, Wang H, Feng X, Liu X. J Am Chem Soc, 2023, 145: 15611–15618

    Article  CAS  PubMed  Google Scholar 

  43. Xu N, Pu M, Yu H, Yang G, Liu X, Feng X. Angew Chem Int Ed, 2024, 63: e202314256

    Article  CAS  Google Scholar 

  44. Liu XH, Lin LL, Feng XM. Acc Chem Res, 2011, 44: 574–587

    Article  CAS  PubMed  Google Scholar 

  45. Liu X, Lin L, Feng X. Org Chem Front, 2014, 1: 298

    Article  CAS  Google Scholar 

  46. Liu X, Zheng H, **a Y, Lin L, Feng X. Acc Chem Res, 2017, 50: 2621–2631

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Dong S, Lin L, Feng X. Chin J Chem, 2018, 36: 791–797

    Article  CAS  Google Scholar 

  48. Cao W, Liu X, Feng X. Chin Sci Bull, 2020, 65: 2941–2951

    Article  Google Scholar 

  49. Wang MY, Li W. Chin J Chem, 2021, 39: 969–984

    Article  CAS  Google Scholar 

  50. Dong S, Liu X, Feng X. Acc Chem Res, 2022, 55: 415–428

    Article  CAS  PubMed  Google Scholar 

  51. Chen DF, Gong LZ. Org Chem Front, 2023, 10: 3676–3683

    Article  CAS  Google Scholar 

  52. He YM, Cheng YZ, Duan Y, Zhang YD, Fan QH, You SL, Luo S, Zhu SF, Fu XF, Zhou QL. CCS Chem, 2023, 5: 2685–2716

    Article  CAS  Google Scholar 

  53. Li J, Ning L, Tan Q, Feng X, Liu X. Org Chem Front, 2022, 9: 6312–6318

    Article  CAS  Google Scholar 

  54. Deposition Number 2271770 (3an) and 2256161 (3ap) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

  55. Zhu X, Li Y, Bao H. Chin J Chem, 2023, 41: 3097–3114

    Article  CAS  Google Scholar 

  56. Dong S, Cao W, Pu M, Liu X, Feng X. CCS Chem, 2023, 5: 2717–2735

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22188101) and Sichuan Science and Technology Program (2021YJ0561). We appreciate Dr. Bo Gao from the Analytical & Testing Center of Sichuan University for help with LC-MS characterization. We thank Dr. Yuqiao Zhou (Sichuan University) for assistance in X-ray analysis and Dr. Hanjiao Chen (Sichuan University) for assistance with EPR measurement and simulation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aohua Liu or **aoming Feng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yihuo, A., Pu, M., Tan, Z. et al. Copper-catalyzed asymmetric dearomatizing amination of 2-naphthols: Csp2–N coupling via 1,3-reductive elimination. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-2030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-024-2030-3

Navigation