Log in

Lactonization of dyes promoted by a coordination cage facilitates cavity-induced chromism as ion mobile detector

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Dye molecules often change colors (so-called “chromism”) according to the environment variation. However, they are rarely induced by a catalytic amount of cavity. Through encapsulation in the cavity of a porous coordination cage (PCC-2), Rhodamine B (1) is transformed from red quinonoid form (1q) into colorless lactone form (1l) in aprotic polar solutions. The μ4-OH groups in the cavity of PCC-2 are shown to stabilize the uncommon zwitterion intermediate (1z), followed by converting to 1l, thus accelerating the equilibrium. The chromism is catalyzed by 0.25 mol% of PCC-2, and the reaction rate is improved by 80,400 times. 1@PCC-2 can be further fabricated to a sol-gel that exhibits ion recognition properties. The resulting encapsulation and stabilization of an unconventional intermediate by a catalytic amount of the coordination cage provides fundamental insights into molecular isomerization and has potential use in chemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Olenyuk B, Whiteford JA, Fechtenkötter A, Stang PJ. Nature, 1999, 398: 796–799

    Article  CAS  PubMed  Google Scholar 

  2. Sudik AC, Millward AR, Ockwig NW, Côté AP, Kim J, Yaghi OM. J Am Chem Soc, 2005, 127: 7110–7118

    Article  CAS  PubMed  Google Scholar 

  3. Sato S, Iida J, Suzuki K, Kawano M, Ozeki T, Fujita M. Science, 2006, 313: 1273–1276

    Article  CAS  PubMed  Google Scholar 

  4. Kaphan DM, Levin MD, Bergman RG, Raymond KN, Toste FD. Science, 2015, 350: 1235–1238

    Article  CAS  PubMed  Google Scholar 

  5. Sánchez-González E, Tsang MY, Troyano J, Craig GA, Furukawa S. Chem Soc Rev, 2022, 51: 4876–4889

    Article  PubMed  Google Scholar 

  6. Yan X, Cook TR, Wang P, Huang F, Stang PJ. Nat Chem, 2015, 7: 342–348

    Article  CAS  PubMed  Google Scholar 

  7. Fang Y, Murase T, Sato S, Fujita M. J Am Chem Soc, 2013, 135: 613–615

    Article  CAS  PubMed  Google Scholar 

  8. Zhang D, Ronson TK, Zou YQ, Nitschke JR. Nat Rev Chem, 2021, 5: 168–182

    Article  CAS  PubMed  Google Scholar 

  9. Tabuchi R, Takezawa H, Fujita M. Angew Chem Int Ed, 2022, 61: e202208866

    Article  CAS  Google Scholar 

  10. Gemen J, Church JR, Ruoko TP, Durandin N, Bialek MJ, Weißenfels M, Feller M, Kazes M, Odaybat M, Borin VA, Kalepu R, Diskin-Posner Y, Oron D, Fuchter MJ, Priimagi A, Schapiro I, Klajn R. Science, 2023, 381: 1357–1363

    Article  CAS  PubMed  Google Scholar 

  11. Takezawa H, Akiba S, Murase T, Fujita M. J Am Chem Soc, 2015, 137: 7043–7046

    Article  CAS  PubMed  Google Scholar 

  12. Takezawa H, Murase T, Fujita M. J Am Chem Soc, 2012, 134: 17420–17423

    Article  CAS  PubMed  Google Scholar 

  13. Samanta D, Galaktionova D, Gemen J, Shimon LJW, Diskin-Posner Y, Avram L, Kral P, Klajn R. Nat Commun, 2018, 9: 641

    Article  PubMed  PubMed Central  Google Scholar 

  14. Howlader P, Mondal B, Purba PC, Zangrando E, Mukherjee PS. J Am Chem Soc, 2018, 140: 7952–7960

    Article  CAS  PubMed  Google Scholar 

  15. Samanta D, Gemen J, Chu Z, Diskin-Posner Y, Shimon LJW, Klajn R. Proc Natl Acad Sci USA, 2018, 115: 9379–9384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhattacharyya S, Ali SR, Venkateswarulu M, Howlader P, Zangrando E, De M, Mukherjee PS. J Am Chem Soc, 2020, 142: 18981–18989

    Article  CAS  PubMed  Google Scholar 

  17. Pohlers G, Scaiano JC, Sinta R, Brainard R, Pai D. Chem Mater, 1997, 9: 1353–1361

    Article  CAS  Google Scholar 

  18. Deng F, Sun D, Yang S, Huang W, Huang C, Xu Z, Liu L. Spectro-Chim Acta Part A-Mol Biomol Spectr, 2022, 268: 120662

    Article  CAS  Google Scholar 

  19. Mertes N, Busch M, Huppertz MC, Hacker CN, Wilhelm J, Gürth CM, Kühn S, Hiblot J, Koch B, Johnsson K. J Am Chem Soc, 2022, 144: 6928–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Chem Soc Rev, 2023, 52: 5607–5651

    Article  CAS  PubMed  Google Scholar 

  21. Shigemitsu H, Sato K, Hagio S, Tani Y, Mori T, Ohkubo K, Osakada Y, Fujitsuka M, Kida T. ACS Appl Nano Mater, 2022, 5: 14954–14960

    Article  CAS  Google Scholar 

  22. Hazra A, Roy P. Anal Chim Acta, 2022, 1193: 339378

    Article  CAS  PubMed  Google Scholar 

  23. Barra M, Cosa JJ, De Rossi RH. J Org Chem, 1990, 55: 5850–5853

    Article  CAS  Google Scholar 

  24. Zheng ML, Chen WQ, Duan XM. J Phys Chem A, 2008, 112: 6864–6868

    Article  CAS  PubMed  Google Scholar 

  25. Dela Cruz JL, Blanchard GJ. J Phys Chem A, 2002, 106: 10718–10724

    Article  CAS  Google Scholar 

  26. Iyer DK, Shaji A, Singh SP, Tripathi A, Hazra A, Mandal S, Ghosh P. Coord Chem Rev, 2023, 495: 215371

    Article  CAS  Google Scholar 

  27. Stephenson CJ, Shimizu KD. Org Biomol Chem, 2010, 8: 1027–1032

    Article  CAS  PubMed  Google Scholar 

  28. Hinckley DA, Seybold PG, Borris DP. Spectrochim Acta Part A-Mol Spectr, 1986, 42: 747–754

    Article  Google Scholar 

  29. Karpiuk J, Grabowski ZR, De Schryver FC. Proc IndAcad Sci (Chem Sci), 1992, 104: 133–142

    Article  CAS  Google Scholar 

  30. Liu MJ, Fu ZY, Sun R, Yuan J, Liu CM, Zou B, Wang BW, Kou HZ. ACS Appl Electron Mater, 2021, 3: 1368–1374

    Article  CAS  Google Scholar 

  31. Ghosh P, Roy P. Chem Commun, 2023, 59: 5174–5200

    Article  CAS  Google Scholar 

  32. Fang Y, **ao Z, Li J, Lollar C, Liu L, Lian X, Yuan S, Banerjee S, Zhang P, Zhou H. Angew Chem Int Ed, 2018, 57: 5283–5287

    Article  CAS  Google Scholar 

  33. Fang Y, Li JL, Togo T, ** FY, **ao ZF, Liu LJ, Drake H, Lian XZ, Zhou HC. Chem, 2018, 4: 555–563

    Article  CAS  Google Scholar 

  34. Dai FR, Wang Z. J Am Chem Soc, 2012, 134: 8002–8005

    Article  CAS  PubMed  Google Scholar 

  35. Liu M, Liao W, Hu C, Du S, Zhang H. Angew Chem Int Ed, 2012, 51: 1585–1588

    Article  CAS  Google Scholar 

  36. Qiao Y, Zhang L, Li J, Lin W, Wang Z. Angew Chem Int Ed, 2016, 55: 12778–12782

    Article  CAS  Google Scholar 

  37. Mchedlov-Petrossyan NO, Kukhtik VI, Bezugliy VD. J Phys Org Chem, 2003, 16: 380–397

    Article  CAS  Google Scholar 

  38. El-Rayyes AA, Al-Betar A, Htun T, Klein UKA. Chem Phys Lett, 2005, 414: 287–291

    Article  CAS  Google Scholar 

  39. Bagno A, Scorrano G. J Am Chem Soc, 1988, 110: 4577–4582

    Article  CAS  Google Scholar 

  40. Reichardt C. Chem. Rev, 1994, 94: 2319–2358, doi: https://doi.org/10.1021/crO0032a005

    Article  CAS  Google Scholar 

  41. Grimm JB, Lavis LD. Org Lett, 2011, 13: 6354–6357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mchedlov-Petrosyan NO, Fedorov LA, Sokolovskii SA, Surov YN, Maiorga RS. Russ Chem Bull, 1992, 41: 403–409

    Article  Google Scholar 

  43. Hirose K. J Inclusion Phenomena Macrocyclic Chem, 2001, 39: 193–209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fujian Province Natural Science Foundation (2023J01294), the Natural Science Basic Research Program of Shaanxi (2023-JC-YB-088), the National Natural Science Foundation of China (21501133, 22371067) and the China Hunan Provincial Science & Technology Department (2020RC3020, 2021JJ20021, 2023JJ40119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Fang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

Lactonization of Dyes Promoted by a Coordination Cage Facilitates Cavity-Induced Chromism as Ion Mobile Detector

Supplementary material, approximately 3.44 MB.

Supplementary material, approximately 5.40 MB.

Supplementary material, approximately 4.43 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liang, Y., **ao, Z. et al. Lactonization of dyes promoted by a coordination cage facilitates cavity-induced chromism as ion mobile detector. Sci. China Chem. 67, 1554–1560 (2024). https://doi.org/10.1007/s11426-023-1921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1921-6

Navigation