Log in

Flour-derived borocarbonitride enriched with boron–oxygen species for the oxidative dehydrogenation of propane to olefins

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The preparation of porous materials by the simple and low-cost methods is one of the hot topics in materials science. Here, the porous carbon-incorporated BN (P-CBN) was synthesized from the low-cost flour by a fermentation combined with freeze-drying technology and ammonolysis. P-CBN-x samples not only maintain the pores of the fermented dough, but also produce abundant oxygen-containing boron species (B-OH, O-O and B-O). Due to the unique structural advantages, P-CBN-x catalysts exhibit remarkably better catalytic performance than bulk BN for the oxidative dehydrogenation of propane (ODHP) to produce olefins. Attractively, P-CBN-23 obtains high C3H8 conversion of 62.1% and olefin yield of 42.7%. In-situ DRIFTS experiments and DFT calculations demonstrate the B-OO-B species in P-CBN-x framework is the most active species for the C3H8 activation and the B-O…O-B species can be readily regenerated by O2, thus promoting the conversion of propane to olefin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y, Pei C, Gong J. Chem Soc Rev, 2021, 50: 3315–3354

    Article  CAS  PubMed  Google Scholar 

  2. Monai M, Gambino M, Wannakao S, Weckhuysen BM. Chem Soc Rev, 2021, 50: 11503–11529

    Article  CAS  PubMed  Google Scholar 

  3. Jiang X, Sharma L, Fung V, Park SJ, Jones CW, Sumpter BG, Bal-trusaitis J, Wu Z. ACS Catal, 2021, 11: 2182–2234

    Article  CAS  Google Scholar 

  4. Kharlamova TS, Timofeev KL, Salaev MA, Svetlichnyi VA, Vo-dyankina OV. Appl Catal A-Gen, 2020, 598: 117574

    Article  CAS  Google Scholar 

  5. Liu Q, Li J, Zhao Z, Gao M, Kong L, Liu J, Wei Y. Catal Sci Technol, 2016, 6: 5927–5941

    Article  CAS  Google Scholar 

  6. Gaggioli CA, Sauer J, Gagliardi L. J Am Chem Soc, 2019, 141: 14603–14611

    Article  CAS  PubMed  Google Scholar 

  7. **e Q, Zhang H, Kang J, Cheng J, Zhang Q, Wang Y. ACS Catal, 2018, 8: 4902–4916

    Article  CAS  Google Scholar 

  8. **ng F, Ma J, Shimizu K, Furukawa S. Nat Commun, 2022, 13: 5065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen K, Iglesia E, Bell AT. J Phys Chem B, 2001, 105: 646–653

    Article  CAS  Google Scholar 

  10. Sheng J, Yan B, Lu WD, Qiu B, Gao XQ, Wang D, Lu AH. Chem Soc Rev, 2021, 50: 1438–1468

    Article  CAS  PubMed  Google Scholar 

  11. Schmatz-Engert P, Herold F, Heinschke S, Totzauer L, Hofmann K, Drochner A, Weidenkaff A, Schneider JJ, Albert B, Qi W, Etzold BJM. ChemCatChem, 2022, 14: e202200068

    CAS  Google Scholar 

  12. Grant JT, Carrero CA, Goeltl F, Venegas J, Mueller P, Burt SP, Specht SE, McDermott WP, Chieregato A, Hermans I. Science, 2016, 354: 1570–1573

    Article  CAS  PubMed  Google Scholar 

  13. Shi L, Yan B, Shao D, Jiang F, Wang D, Lu AH. Chin J Catal, 2017, 38: 389–395

    Article  CAS  Google Scholar 

  14. Zhou H, Yi X, Hui Y, Wang L, Chen W, Qin Y, Wang M, Ma J, Chu X, Wang Y, Hong X, Chen Z, Meng X, Wang H, Zhu Q, Song L, Zheng A, **ao FS. Science, 2021, 372: 76–80

    Article  CAS  PubMed  Google Scholar 

  15. Li P, Zhang X, Wang J, Xue Y, Yao Y, Chai S, Zhou B, Wang X, Zheng N, Yao J. J Am Chem Soc, 2022, 144: 5930–5936

    Article  CAS  PubMed  Google Scholar 

  16. Yan H, Alayoglu S, Wu W, Zhang Y, Weitz E, Stair PC, Notestein JM. ACS Catal, 2021, 11: 9370–9376

    Article  CAS  Google Scholar 

  17. Tian J, Li J, Qian S, Zhang Z, Wan S, Wang S, Lin J, Wang Y. Appl Catal A-Gen, 2021, 623: 118271

    Article  CAS  Google Scholar 

  18. Cao L, Dai P, Tang J, Li D, Chen R, Liu D, Gu X, Li L, Bando Y, Ok YS, Zhao X, Yamauchi Y. J Am Chem Soc, 2020, 142: 8755–8762

    Article  PubMed  Google Scholar 

  19. Liu Z, Yan B, Meng S, Liu R, Lu WD, Sheng J, Yi Y, Lu AH. Angew Chem Int Ed, 2021, 60: 19691–19695

    Article  CAS  Google Scholar 

  20. Qiu B, Lu WD, Gao XQ, Sheng J, Ji M, Wang D, Lu AH. J Catal, 2023, 417: 14–21

    Article  CAS  Google Scholar 

  21. Wu Z, Zhou Y, Ying H, Lin J, Han WQ. Chem Phys Lett, 2020, 746: 137294

    Article  Google Scholar 

  22. Chaturbedy P, Ahamed M, Eswaramoorthy M. ACS Omega, 2018, 3: 369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding D, Yan B, Wang Y, Lu A-. ChemCatChem, 2021, 13: 3312–3318

    Article  CAS  Google Scholar 

  24. Zhou Y, Lin J, Li L, Pan X, Sun X, Wang X. J Catal, 2018, 365: 14–23

    Article  CAS  Google Scholar 

  25. Karbhal I, Devarapalli RR, Debgupta J, Pillai VK, Ajayan PM, Shelke MV. Chem Eur J, 2016, 22: 7134–7140

    Article  CAS  PubMed  Google Scholar 

  26. Yadav VK, Chakraborty H, Klein ML, Waghmare UV, Rao CNR. Nanoscale, 2019, 11: 19398–19407

    Article  CAS  PubMed  Google Scholar 

  27. Huang C, Chen C, Zhang M, Lin L, Ye X, Lin S, Antonietti M, Wang X. Nat Commun, 2015, 6: 7698

    Article  PubMed  Google Scholar 

  28. Wang Y, Li WC, Zhou YX, Lu R, Lu AH. Catal Today, 2020, 339: 62–66

    Article  CAS  Google Scholar 

  29. Zhang Z, Ding J, Chai R, Zhao G, Liu Y, Lu Y. Appl Catal A-Gen, 2018, 550: 151–159

    Article  CAS  Google Scholar 

  30. Wang J, Liu D, Li Q, Chen C, Chen Z, Song P, Hao J, Li Y, Fakhr-hoseini S, Naebe M, Wang X, Lei W. ACS Nano, 2019, 13: 7860–7870

    Article  CAS  PubMed  Google Scholar 

  31. Lin W, Chen H, Lin G, Yao S, Zhang Z, Qi J, **g M, Song W, Li J, Liu X, Fu J, Dai S. Angew Chem Int Ed, 2022, 61: e202207807

    CAS  Google Scholar 

  32. Lu WD, Gao XQ, Wang QG, Li WC, Zhao ZC, Wang DQ, Lu AH. Chin J Catal, 2020, 41: 1837–1845

    Article  CAS  Google Scholar 

  33. Zhang X, You R, Wei Z, Jiang X, Yang J, Pan Y, Wu P, Jia Q, Bao Z, Bai L, ** M, Sumpter B, Fung V, Huang W, Wu Z. Angew Chem Int Ed, 2020, 59: 8042–8046

    Article  CAS  Google Scholar 

  34. McCalla E, Abakumov AM, Saubanère M, Foix D, Berg EJ, Rousse G, Doublet ML, Gonbeau D, Novák P, Van Tendeloo G, Dominko R, Tarascon JM. Science, 2015, 350: 1516–1521

    Article  CAS  PubMed  Google Scholar 

  35. Permyakova ES, Antipina LY, Kovalskii AM, Zhitnyak IY, Gudz KY, Polčak J, Sorokin PB, Manakhov AM, Shtansky DV. J Phys Chem C, 2018, 122: 26409–26418

    Article  CAS  Google Scholar 

  36. Shi L, Wang D, Song W, Shao D, Zhang WP, Lu AH. ChemCatChem, 2017, 9: 1720

    Article  CAS  Google Scholar 

  37. Zhang X, Yan P, Xu J, Li F, Herold F, Etzold BJM, Wang P, Su DS, Lin S, Qi W, **e Z. Sci Adv, 2020, 6: eaba5778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carter JH, Bere T, Pitchers JR, Hewes DG, Vandegehuchte BD, Kiely CJ, Taylor SH, Hutchings GJ. Green Chem, 2021, 23: 9747–9799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the major research projects of National Natural Science Foundation of China (92145301, 91845201), National Natural Science Foundation of China (22002093, 22002094). Liaoning Provincial Central Government Guides Local Science and Technology Development Funds (2022JH6/100100052). The Engineering Technology Research Center of Catalysis for Energy and Environment, Major Platform for Science and Technology of the Universities in Liaoning Province, Liaoning Province Key Laboratory for Highly Efficient Conversion and Clean Utilization of Oil and Gas Resources, the Engineering Research Center for Highly Efficient Conversion and Clean Use of Oil and Gas Resources of Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian Kong, Bing Liu or Zhen Zhao.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information for

11426_2023_1651_MOESM1_ESM.pdf

Flour-derived borocarbonitride enriched with boron–oxygen species for the oxidative dehydrogenation of propane to olefins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Bi, J., **e, Z. et al. Flour-derived borocarbonitride enriched with boron–oxygen species for the oxidative dehydrogenation of propane to olefins. Sci. China Chem. 66, 2389–2399 (2023). https://doi.org/10.1007/s11426-023-1651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1651-2

Navigation