Log in

Boosting multi-hole water oxidation catalysis on hematite photoanodes under low bias

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The accumulation of multiple surface holes is considered to be the key to efficient photoelectrochemical (PEC) water oxidation. Previous PEC water oxidation studies commonly apply high potentials (>1.2 VRHE) to achieve this key. But how to complete multi-hole transfer under low bias (<1.2 VRHE) remains unknown. Herein, we find that, on a typical visible-light photoanode, hematite (α-Fe2O3), UV excitation plays a indispensable role in driving multi-hole water oxidation under low bias. Compared with the visible-light excitation, the UV excitation promotes the formation of adjacent surface-trapped holes on α-Fe2O3 at 0.9 VRHE, thereby increasing the reaction order of surface holes from ∼1 to ∼2 and improving the PEC water oxidation activity by one order of magnitude. The UV irradiation reduces the formation probability of self-trapped excitons and results in ∼3 to 5-fold increase of surface holes. These advantages enable the UV excitation to contribute about 40% to the total photocurrent under 1 solar illumination, even though its energy only occupies 6% of the incident light. This mechanism is also applicable to boost selective two-hole oxidation of thioether at \(0.1\,\,{{\rm{V}}_{{\rm{Fc}}/{\rm{F}}{{\rm{c}}^ + }}}\) and nitrite at 0.9 VRHE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J, Chen H, Triana CA, Patzke GR. Angew Chem Int Ed, 2021, 60: 18380–18396

    Article  CAS  Google Scholar 

  2. Corby S, Rao RR, Steier L, Durrant JR. Nat Rev Mater, 2021, 6: 1136–1155

    Article  CAS  Google Scholar 

  3. Zhang Y, Zhang H, Liu A, Chen C, Song W, Zhao J. J Am Chem Soc, 2018, 140: 3264–3269

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Zhang H, Ji H, Ma W, Chen C, Zhao J. J Am Chem Soc, 2016, 138: 2705–2711

    Article  CAS  PubMed  Google Scholar 

  5. Zhang M, de Respinis M, Frei H. Nat Chem, 2014, 6: 362–367

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Wan W, Triana CA, Chen H, Zhao Y, Mavrokefalos CK, Patzke GR. Nat Commun, 2021, 12: 255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. Energy Environ Sci, 2012, 5: 7626–7636

    Article  CAS  Google Scholar 

  8. Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. J Am Chem Soc, 2012, 134: 4294–4302

    Article  CAS  PubMed  Google Scholar 

  9. Nong HN, Falling LJ, Bergmann A, Klingenhof M, Tran HP, Spöri C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke A, Piccinin S, Pérez-Ramírez J, Cuenya BR, Schlögl R, Strasser P, Teschner D, Jones TE. Nature, 2020, 587: 408–413

    Article  CAS  PubMed  Google Scholar 

  10. Zandi O, Hamann TW. Nat Chem, 2016, 8: 778–783

    Article  CAS  PubMed  Google Scholar 

  11. Le Formal F, Pastor E, Tilley SD, Mesa CA, Pendlebury SR, Grätzel M, Durrant JR. J Am Chem Soc, 2015, 137: 6629–6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mesa CA, Francàs L, Yang KR, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser TE, Mayer MT, Reisner E, Grätzel M, Batista VS, Durrant JR. Nat Chem, 2020, 12: 82–89

    Article  CAS  PubMed  Google Scholar 

  13. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J. Chem Soc Rev, 2017, 46: 4645–4660

    Article  CAS  PubMed  Google Scholar 

  14. Tang R, Zhou S, Zhang Z, Zheng R, Huang J. Adv Mater, 2021, 33: 2005389

    Article  CAS  Google Scholar 

  15. Chen D, Liu Z, Zhang S. Appl Catal B-Environ, 2020, 265: 118580

    Article  CAS  Google Scholar 

  16. Mesa CA, Steier L, Moss B, Francàs L, Thorne JE, Grätzel M, Durrant JR. J Phys Chem Lett, 2020, 11: 7285–7290

    Article  CAS  PubMed  Google Scholar 

  17. Li C, Luo Z, Wang T, Gong J. Adv Mater, 2018, 30: 1707502

    Article  Google Scholar 

  18. Sharma P, Jang JW, Lee JS. ChemCatChem, 2018, 11: 157–179

    Article  Google Scholar 

  19. Sivula K, Le Formal F, Grätzel M. ChemSusChem, 2011, 4: 432–449

    Article  CAS  PubMed  Google Scholar 

  20. Shelton JL, Knowles KE. J Phys Chem Lett, 2021, 12: 3343–3351

    Article  CAS  PubMed  Google Scholar 

  21. Carneiro LM, Cushing SK, Liu C, Su Y, Yang P, Alivisatos AP, Leone SR. Nat Mater, 2017, 16: 819–825

    Article  CAS  PubMed  Google Scholar 

  22. Fan Y, Lin Y, Zhang KHL, Yang Y. J Phys Chem Lett, 2021, 12: 4166–4171

    Article  CAS  PubMed  Google Scholar 

  23. Fan Y, Lin Y, Wang K, Zhang KHL, Yang Y. Phys Rev B, 2021, 103: 085206

    Article  CAS  Google Scholar 

  24. Yang Z, Wang X, Chen Y, Zheng Z, Chen Z, Xu W, Liu W, Yang YM, Zhao J, Chen T, Zhu H. Nat Commun, 2019, 10: 4540

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Jiang S, Song W, Zhou P, Ji H, Ma W, Hao W, Chen C, Zhao J. Energy Environ Sci, 2015, 8: 1231–1236

    Article  CAS  Google Scholar 

  26. Ning X, Du P, Han Z, Chen J, Lu X. Angew Chem Int Ed, 2021, 60: 3504–3509

    Article  CAS  Google Scholar 

  27. Gao X, Chen Y, Sun T, Huang J, Zhang W, Wang Q, Cao R. Energy Environ Sci, 2020, 13: 174–182

    Article  CAS  Google Scholar 

  28. Steimecke M, Seiffarth G, Bron M. Anal Chem, 2017, 89: 10679–10686

    Article  CAS  PubMed  Google Scholar 

  29. Lefrou C, Cornut R. ChemPhysChem, 2010, 11: 547–556

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Botz AJR, Masa J, Schuhmann W. J Solid State Electrochem, 2015, 20: 1019–1027

    Article  Google Scholar 

  31. Wang Z, Jiang J, Pang S, Zhou Y, Guan C, Gao Y, Li J, Yang Y, Qiu W, Jiang C. Environ Sci Technol, 2018, 52: 11276–11284

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Qiu W, Pang S, Guo Q, Guan C, Jiang J. Environ Sci Technol, 2022, 56: 1492–1509

    Article  CAS  PubMed  Google Scholar 

  33. Sharma VK. Environ Sci Technol, 2010, 44: 5148–5152

    Article  CAS  PubMed  Google Scholar 

  34. Pang SY, Jiang J, Ma J. Environ Sci Technol, 2011, 45: 307–312

    Article  CAS  PubMed  Google Scholar 

  35. Pastor E, Park JS, Steier L, Kim S, Grätzel M, Durrant JR, Walsh A, Bakulin AA. Nat Commun, 2019, 10: 3962

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, García-Rodríguez R, Cameron P, Eslava S. Energy Environ Sci, 2018, 11: 2972–2984

    Article  CAS  Google Scholar 

  37. Antuch M, Millet P, Iwase A, Kudo A. Appl Catal B-Environ, 2018, 237: 401–408

    Article  CAS  Google Scholar 

  38. Thorne JE, Jang JW, Liu EY, Wang D. Chem Sci, 2016, 7: 3347–3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li W, He D, Sheehan SW, He Y, Thorne JE, Yao X, Brudvig GW, Wang D. Energy Environ Sci, 2016, 9: 1794–1802

    Article  CAS  Google Scholar 

  40. Zhao Y, Deng C, Tang D, Ding L, Zhang Y, Sheng H, Ji H, Song W, Ma W, Chen C, Zhao J. Nat Catal, 2021, 4: 684–691

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22072158), the National Key R&D Program of China (2022YFA1505000, 2020YFC1808401), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000) and CAS Project for Young Scientists in Basic Research (YSBR-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchao Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Tang, D., Xue, J. et al. Boosting multi-hole water oxidation catalysis on hematite photoanodes under low bias. Sci. China Chem. 66, 896–903 (2023). https://doi.org/10.1007/s11426-022-1527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1527-9

Keywords

Navigation