Log in

Templated freezing assembly precisely regulates molecular assembly for free-standing centimeter-scale microtextured nanofilms

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nature provides diverse models for manufacturing complex and hierarchical materials by controlling molecular assembly at scales ranging from sub-nano to macroscale. However, develo** artificial strategies for manufacturing hierarchical materials with comparable machining capabilities to nature is extremely challenging. Here, a templated freezing assembly strategy is reported, enabling simultaneously regulating molecular assembly spatiotemporally to obtain hierarchical materials with structure control from sub-nano to macroscale. In this way, unique centimeter-scale freestanding nanofilms are assembled from diverse molecules, e.g., proteins and conjugated polymers. A generated silk fibroin (SF) nanofilm presents a tunable β-sheet fraction from 5% to 47%, fiber width from 30 to 3,000 nm, and micro-textures with desired shapes. Such a strategy will lay the foundation for customizing hierarchical functional materials from single or multi-component molecules, e.g., desired bio-scaffolds with controlled cell adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R. Science, 2018, 360: eaao2189

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bruet BJF, Song J, Boyce MC, Ortiz C. Nat Mater, 2008, 7: 748–756

    Article  CAS  PubMed  Google Scholar 

  3. Formisano N, van der Putten C, Grant R, Sahin G, Truckenmüller RK, Bouten CVC, Kurniawan NA, Giselbrecht S. Adv Healthcare Mater, 2021, 10: 2100972

    Article  CAS  Google Scholar 

  4. Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. Adv Mater, 2019, 31: 1801651

    Article  Google Scholar 

  5. Zhao H, Liu S, Wei Y, Yue Y, Gao M, Li Y, Zeng X, Deng X, Kotov NA, Guo L, Jiang L. Science, 2022, 375: 551–556

    Article  CAS  PubMed  Google Scholar 

  6. Goda I, Assidi M, Belouettar S, Ganghoffer JF. J Mech Behav Biomed Mater, 2012, 16: 87–108

    Article  CAS  PubMed  Google Scholar 

  7. Hua M, Wu S, Ma Y, Zhao Y, Chen Z, Frenkel I, Strzalka J, Zhou H, Zhu X, He X. Nature, 2021, 590: 594–599

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Cui Z, Hou L, Li D, Gao Y, Shuai L, Liu J, ** J, Wang N, Zhao Y. Sci China Chem, 2018, 62: 14–23

    Article  Google Scholar 

  9. Deville S, Saiz E, Nalla RK, Tomsia AP. Science, 2006, 311: 515–518

    Article  CAS  PubMed  Google Scholar 

  10. He Y, Peng Y, Li Z, Ma J, Zhang X, Liu K, Wang W, Jiang L. Sci China Chem, 2015, 59: 271–276

    Article  Google Scholar 

  11. ** HJ, Kaplan DL. Nature, 2003, 424: 1057–1061

    Article  CAS  PubMed  Google Scholar 

  12. Li C, Wu J, Shi H, **a Z, Sahoo JK, Yeo J, Kaplan DL. Adv Mater, 2022, 34: 2105196

    Article  CAS  Google Scholar 

  13. Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste UH, Bruck HA, Zhu JY, Vellore A, Li H, Minus ML, Jia Z, Martini A, Li T, Hu L. Nature, 2018, 554: 224–228

    Article  CAS  PubMed  Google Scholar 

  14. Tseng P, Napier B, Zhao S, Mitropoulos AN, Applegate MB, Marelli B, Kaplan DL, Omenetto FG. Nat Nanotech, 2017, 12: 474–480

    Article  CAS  Google Scholar 

  15. Lei M, Qu X, Wan H, ** D, Wang S, Zhao Z, Yin M, Payne GF, Liu C. Sci Adv, 2022, 8: eabl7506

  16. Gu D, Shi X, Poprawe R, Bourell DL, Setchi R, Zhu J. Science, 2021, 372: eabg1487

    Article  CAS  PubMed  Google Scholar 

  17. Wang M, Li W, Hao J, Gonzales Iii A, Zhao Z, Flores RS, Kuang X, Mu X, Ching T, Tang G, Luo Z, Garciamendez-Mijares CE, Sahoo JK, Wells MF, Niu G, Agrawal P, Quiñones-Hinojosa A, Eggan K, Zhang YS. Nat Commun, 2022, 13: 3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Nie W, Chen R, Chelora J, Wan Y, Cui X, Zhang X, Zhang W, Chen X, **e HY, Lee CS. Nano Lett, 2019, 19: 658–665

    Article  CAS  PubMed  Google Scholar 

  19. Su D, Yao M, Liu J, Zhong Y, Chen X, Shao Z. ACS Appl Mater Interfaces, 2017, 9: 17489–17498

    Article  CAS  PubMed  Google Scholar 

  20. Wang W, Liu Y, Wang S, Fu X, Zhao T, Chen X, Shao Z. ACS Appl Mater Interfaces, 2020, 12: 25353–25362

    Article  CAS  PubMed  Google Scholar 

  21. Han H, Kallakuri S, Yao Y, Williamson CB, Nevers DR, Savitzky BH, Skye RS, Xu M, Voznyy O, Dshemuchadse J, Kourkoutis LF, Weinstein SJ, Hanrath T, Robinson RD. Nat Mater, 2022, 21: 518–525

    Article  CAS  PubMed  Google Scholar 

  22. Moore DG, Barbera L, Masania K, Studart AR. Nat Mater, 2020, 19: 212–217

    Article  CAS  PubMed  Google Scholar 

  23. Huang Z, Su M, Yang Q, Li Z, Chen S, Li Y, Zhou X, Li F, Song Y. Nat Commun, 2017, 8: 14110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu Y, Feng J, Su B, Jiang L. Adv Mater, 2016, 28: 2266–2273

    Article  CAS  PubMed  Google Scholar 

  25. Lee WK, Kang J, Chen KS, Engel CJ, Jung WB, Rhee D, Hersam MC, Odom TW. Nano Lett, 2016, 16: 7121–7127

    Article  CAS  PubMed  Google Scholar 

  26. Knight CA, Hallett J, DeVries AL. Cryobiology, 1988, 25: 55–60

    Article  CAS  PubMed  Google Scholar 

  27. Baker I, Cullen D, Iliescu D. Can J Phys, 2003, 81: 1–9

    Article  CAS  Google Scholar 

  28. Rempel AW, Waddington ED, Wettlaufer JS, Worster MG. Nature, 2001, 411: 568–571

    Article  CAS  PubMed  Google Scholar 

  29. Fan Q, Li L, Xue H, Zhou H, Zhao L, Liu J, Mao J, Wu S, Zhang S, Wu C, Li X, Zhou X, Wang J. Angew Chem Int Ed, 2020, 59: 15141–15146

    Article  CAS  Google Scholar 

  30. Fan Q, Dou M, Mao J, Hou Y, Liu S, Zhao L, Lv J, Liu Z, Wang Y, Rao W, ** S, Wang J. Biomacromolecules, 2022, 23: 478–486

    Article  CAS  PubMed  Google Scholar 

  31. Tu H, Yu R, Lin Z, Zhang L, Lin N, Yu WD, Liu XY. Adv Funct Mater, 2016, 26: 9032–9043

    Article  CAS  Google Scholar 

  32. Wu S, Li L, Xue H, Liu K, Fan Q, Bai G, Wang J. ACS Nano, 2017, 11: 9898–9905

    Article  CAS  PubMed  Google Scholar 

  33. Voorhees PW. J Stat Phys, 1985, 38: 231–252

    Article  Google Scholar 

  34. Hu X, Kaplan D, Cebe P. Macromolecules, 2006, 39: 6161–6170

    Article  CAS  Google Scholar 

  35. Taddei P, Monti P. Biopolymers, 2005, 78: 249–258

    Article  CAS  PubMed  Google Scholar 

  36. Guo C, Li C, Vu HV, Hanna P, Lechtig A, Qiu Y, Mu X, Ling S, Nazarian A, Lin SJ, Kaplan DL. Nat Mater, 2020, 19: 102–108

    Article  CAS  PubMed  Google Scholar 

  37. Yao HB, Fang HY, Wang XH, Yu SH. Chem Soc Rev, 2011, 40: 3764–3785

    Article  CAS  PubMed  Google Scholar 

  38. Valluzzi R, Winkler S, Wilson D, Kaplan DL. Philos Trans R Soc Lond B Biol Sci, 2002, 357: 165–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hofmann S, Wong Po Foo CT, Rossetti F, Textor M, Vunjak-Novakovic G, Kaplan DL, Merkle HP, Meinel L. J Control Release, 2006, 111: 219–227

    Article  CAS  PubMed  Google Scholar 

  40. Tretinnikov ON, Tamada Y. Langmuir, 2001, 17: 7406–7413

    Article  CAS  Google Scholar 

  41. Xu Z, Wu M, Gao W, Bai H. Sci Adv, 2022, 8: eabo0946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu X, Shmelev K, Sun L, Gil ES, Park SH, Cebe P, Kaplan DL. Biomacromolecules, 2011, 12: 1686–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. **ao S, Chen C, **a Q, Liu Y, Yao Y, Chen Q, Hartsfield M, Brozena A, Tu K, Eichhorn SJ, Yao Y, Li J, Gan W, Shi SQ, Yang VW, Lo Ricco M, Zhu JY, Burgert I, Luo A, Li T, Hu L. Science, 2021, 374: 465–471

    Article  CAS  PubMed  Google Scholar 

  44. Thrivikraman G, Athirasala A, Gordon R, Zhang L, Bergan R, Keene DR, Jones JM, **e H, Chen Z, Tao J, Wingender B, Gower L, Ferracane JL, Bertassoni LE. Nat Commun, 2019, 10: 3520

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhu S, Zeng W, Meng Z, Luo W, Ma L, Li Y, Lin C, Huang Q, Lin Y, Liu XY. Adv Mater, 2019, 31: 1900870

    Article  Google Scholar 

  46. Ju J, Hu N, Cairns DM, Liu H, Timko BP. Proc Natl Acad Sci USA, 2020, 117: 15482–15489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, Suh KY, Tung L, Levchenko A. Proc Natl Acad Sci USA, 2010, 107: 565–570

    Article  CAS  PubMed  Google Scholar 

  48. Jeon H, Koo S, Reese WM, Loskill P, Grigoropoulos CP, Healy KE. Nat Mater, 2015, 14: 918–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qing H, ** G, Zhao G, Huang G, Ma Y, Zhang X, Sha B, Luo Z, Lu TJ, Xu F. ACS Appl Mater Interfaces, 2018, 10: 39228–39237

    Article  CAS  PubMed  Google Scholar 

  50. Yao X, Zou S, Fan S, Niu Q, Zhang Y. Mater Today Bio, 2022, 16: 100381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kurland NE, Dey T, Kundu SC, Yadavalli VK. Adv Mater, 2013, 25: 6207–6212

    Article  CAS  PubMed  Google Scholar 

  52. Ryu J, Kim SW, Kang K, Park CB. ACS Nano, 2010, 4: 159–164

    Article  CAS  PubMed  Google Scholar 

  53. Li Q, Jia Y, Dai L, Yang Y, Li J. ACS Nano, 2015, 9: 2689–2695

    Article  CAS  PubMed  Google Scholar 

  54. Moazeni M, Karimzadeh F, Kermanpur A. Biosens Bioelectron, 2018, 117: 748–757

    Article  CAS  PubMed  Google Scholar 

  55. Kim SM, Kim CH, Kim Y, Kim N, Lee WJ, Lee EH, Kim D, Park S, Lee K, Rivnay J, Yoon MH. Nat Commun, 2018, 9: 3858

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yuk H, Lu B, Lin S, Qu K, Xu J, Luo J, Zhao X. Nat Commun, 2020, 11: 1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng YQ, Liu Y, Zhong D, Nikzad S, Liu S, Yu Z, Liu D, Wu HC, Zhu C, Li J, Tran H, Tok JBH, Bao Z. Science, 2021, 373: 88–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFE0100300, 2018YFA0208502), the National Natural Science Foundation of China (51925307, 21733010, 32001083, 22105210), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (ZDBS-LY-SLH031) and the Bei**g National Laboratory for Molecular Sciences (BNLMS-CXXM-2020BMS20025). X. Z. thanks the Strategic Priority Research Program, Chinese Academy of Sciences (XDB28000000) and the National Natural Science Foundation of China (12174388). Authors thank Prof. Lanqun Mao (College of Chemistry, Bei**g Normal University) and Prof. Ming Wang (Institute of Chemistry, Chinese Academy of Sciences, ICCAS) for providing cells and their guidance in biology. We thank Center for Physico-chemical Analysis and Measurement, ICCAS, for assisting the cryo-TEM SAED data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **n Zhou, Qingrui Fan or Jianjun Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

11426_2022_1476_MOESM1_ESM.pdf

Templated freezing assembly precisely regulates molecular assembly for free-standing centimeter-scale microtextured nanofilms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Cao, H., Liu, J. et al. Templated freezing assembly precisely regulates molecular assembly for free-standing centimeter-scale microtextured nanofilms. Sci. China Chem. 66, 878–886 (2023). https://doi.org/10.1007/s11426-022-1476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1476-y

Keywords

Navigation