Log in

Isothianaphthene diimide: an air-stable n-type semiconductor

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Herein, we propose a new strategy to develop air-stable n-type organic semiconductors with non-classical thiophene aromatic diimide derivatives by replacing aromatic naphthalene with a heteroaromatic isothianaphthene core. We designed and successfully synthesized the isothianaphthene core based diimide material, N,N′-bis(n-hexyl)isothianaphthene-2,3,6,7-tetra-carboxylic acid diimide (BTDI-C6) as an n-type semiconductor. Compared to N,N′-bis(n-hexyl)naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-C6), BTDI-C6 possesses a deeper LUMO energy level of −4.21 eV, which is 0.32 eV lower than that of NDI-C6. Both molecular modelling and experimental results elucidated that organic thin film transistors (OTFTs) based on both of these materials exhibit comparable mobilities; however, the threshold voltage of BTDI-C6 based device (+7.5 V) is significantly lower than that of NDI-C6 based counterpart (+34 V). Moreover, the low-lying LUMO energy level of BTDI-C6 ensures excellent air-stability which is further validated by the device performance. In addition, BTDI-C6 shows high luminescence while NDI-C6 is not luminescent at all in solution, which reveals the potential application of our newly synthesized material in n-type light-emitting transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. Guo X, Facchetti A, Marks TJ. Chem Rev, 2014, 114: 8943–9021

    Article  CAS  PubMed  Google Scholar 

  2. Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin YY, Dodabalapur A. Nature, 2000, 404: 478–481

    Article  CAS  PubMed  Google Scholar 

  3. Gao X, Hu Y. J Mater Chem C, 2014, 2: 3099–3117

    Article  CAS  Google Scholar 

  4. Dhar J, Salzner U, Patil S. J Mater Chem C, 2017, 5: 7404–7430

    Article  CAS  Google Scholar 

  5. Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208–2267

    Article  CAS  PubMed  Google Scholar 

  6. Klauk H. Chem Soc Rev, 2010, 39: 2643–2666

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Shi W, Song J, Jang HJ, Dailey J, Yu J, Katz HE. Chem Rev, 2019, 119: 3–35

    Article  CAS  PubMed  Google Scholar 

  8. Chen XK, Zou LY, Guo JF, Ren AM. J Mater Chem, 2012, 22: 6471–6484

    Article  CAS  Google Scholar 

  9. Chen W, Zhang J, Long G, Liu Y, Zhang Q. J Mater Chem C, 2015, 3: 8219–8224

    Article  CAS  Google Scholar 

  10. Gao X, Zhao Z. Sci China Chem, 2015, 58: 947–968

    Article  CAS  Google Scholar 

  11. Shoji T, Ito S. Sci China Chem, 2018, 61: 973–974

    Article  CAS  Google Scholar 

  12. Said AA, **e J, Wang Y, Wang Z, Zhou Y, Zhao K, Gao WB, Michinobu T, Zhang Q. Small, 2019, 15: 1803339

    Article  CAS  Google Scholar 

  13. Shukla D, Nelson SF, Freeman DC, Rajeswaran M, Ahearn WG, Meyer DM, Carey JT. Chem Mater, 2008, 20: 7486–7491

    Article  CAS  Google Scholar 

  14. Chang YC, Kuo MY, Chen CP, Lu HF, Chao I. J Phys Chem C, 2010, 114: 11595–11601

    Article  CAS  Google Scholar 

  15. Zhang D, Zhao L, Zhu Y, Li A, He C, Yu H, He Y, Yan C, Goto O, Meng H. ACS Appl Mater Interfaces, 2016, 8: 18277–18283

    Article  CAS  PubMed  Google Scholar 

  16. Usta H, Risko C, Wang Z, Huang H, Deliomeroglu MK, Zhukhovitskiy A, Facchetti A, Marks TJ. J Am Chem Soc, 2009, 131: 5586–5608

    Article  CAS  PubMed  Google Scholar 

  17. Zhou K, Chen H, Dong H, Fang Q, Hu W. Sci China Chem, 2017, 60: 510–515

    Article  CAS  Google Scholar 

  18. Oh JH, Suraru SL, Lee WY, Könemann M, Höffken HW, Röger C, Schmidt R, Chung Y, Chen WC, Würthner F, Bao Z. Adv Funct Mater, 2010, 20: 2148–2156

    Article  CAS  Google Scholar 

  19. Chen W, Nakano M, Kim JH, Takimiya K, Zhang Q. J Mater Chem C, 2016, 4: 8879–8883

    Article  CAS  Google Scholar 

  20. Chen W, Nakano M, Takimiya K, Zhang Q. Org Chem Front, 2017, 4: 704–710

    Article  CAS  Google Scholar 

  21. Gao X, Di C, Hu Y, Yang X, Fan H, Zhang F, Liu Y, Li H, Zhu D. J Am Chem Soc, 2010, 132: 3697–3699

    Article  CAS  PubMed  Google Scholar 

  22. Zhang F, Hu Y, Schuettfort T, Di C, Gao X, McNeill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu D. J Am Chem Soc, 2013, 135: 2338–2349

    Article  CAS  PubMed  Google Scholar 

  23. Fukutomi Y, Nakano M, Hu JY, Osaka I, Takimiya K. J Am Chem Soc, 2013, 135: 11445–11448

    Article  CAS  PubMed  Google Scholar 

  24. Cui X, **ao C, Winands T, Koch T, Li Y, Zhang L, Doltsinis NL, Wang Z. J Am Chem Soc, 2018, 140: 12175–12180

    Article  CAS  PubMed  Google Scholar 

  25. Amaresh RR, Lakshmikantham MV, Baldwin JW, Cava MP, Metzger RM, Rogers RD. J Org Chem, 2002, 67: 2453–2458

    Article  CAS  PubMed  Google Scholar 

  26. Fabian J, Hess BA. J Org Chem, 1997, 62: 1766–1774

    Article  CAS  Google Scholar 

  27. de Heer J. J Am Chem Soc, 1954, 76: 4802–4806

    Article  CAS  Google Scholar 

  28. Wudl F, Kobayashi M, Heeger AJ. J Org Chem, 1984, 49: 3382–3384

    Article  CAS  Google Scholar 

  29. Meng H, Wudl F. Macromolecules, 2001, 34: 1810–1816

    Article  CAS  Google Scholar 

  30. Qin Y, Kim JY, Frisbie CD, Hillmyer MA. Macromolecules, 2008, 41: 5563–5570

    Article  CAS  Google Scholar 

  31. Kim JY, Qin Y, Stevens DM, Kalihari V, Hillmyer MA, Frisbie CD. J Phys Chem C, 2009, 113: 21928–21936

    Article  CAS  Google Scholar 

  32. Long G, Wan X, Zhou J, Liu Y, Li Z, He G, Zhang M, Hou Y, Chen Y. Macromol Chem Phys, 2012, 213: 1596–1603

    Article  CAS  Google Scholar 

  33. Yu CP, Kimura R, Kurosawa T, Fukuzaki E, Watanabe T, Ishii H, Kumagai S, Yano M, Takeya J, Okamoto T. Org Lett, 2019, 21: 4448–4453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Shenzhen Science and Technology (JCYJ20170412151139619), Shenzhen Engineering Laboratory (Shenzhen development and reform commission [2016]1592), Guangdong Key Research Project (2019B010924003), Guangdong International Science Collaboration Base (2019A050505003), and Shenzhen Peacock Plan (KQTD2014062714543296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Meng.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., He, Y., Ali, M.U. et al. Isothianaphthene diimide: an air-stable n-type semiconductor. Sci. China Chem. 62, 1360–1364 (2019). https://doi.org/10.1007/s11426-019-9555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9555-4

Keywords

Navigation