Log in

Ion current rectification: from nanoscale to microscale

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ion current rectification (ICR) is an electrodynamic phenomenon in electrolyte solution which is defined as the asymmetric potential-dependent ion flux through a confined environment, giving rise to asymmetric electrical current-voltage characteristics induced by the influence of an asymmetric electrical double layer structure. Since the discovery of the ICR phenomenon, the observation and application of ICR at nanoscale and microscale have been widely investigated experimentally and theoretically. Here, the recent progress of ICR from nanoscale to microscale is systematically reviewed. Nano/micropore structures of different materials, shapes and pore sizes are first discussed. Then, the factors influencing ICRs by thermodynamically or kinetically regulating the electrical double layer structure are introduced. Moreover, theoretical models are presented to explain the mechanism of ICRs. Based on the understanding of this phenomenon, the applications, especially in biosensors, are discussed. Finally, future developments of this area are briefly presented. This review covers the representative related literature published since 2010 and is intended to give a systematic introduction to this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lan WJ, Edwards MA, Luo L, Perera RT, Wu X, Martin CR, White HS. Acc Chem Res, 2016, 49: 2605–2613

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Z, Wen L, Jiang L. Chem Soc Rev, 2018, 47: 322–356

    Article  CAS  PubMed  Google Scholar 

  3. Martin CR, Siwy ZS. Science, 2007, 317: 331–332

    Article  CAS  PubMed  Google Scholar 

  4. Pérez-Mitta G, Albesa AG, Trautmann C, Toimil-Molares ME, Azzaroni O. Chem Sci, 2017, 8: 890–913

    Article  PubMed  CAS  Google Scholar 

  5. Chen Q, She J, Zeng W, Guo J, Xu H, Bai XC, Jiang Y. Nature, 2017, 550: 380–383

    Article  CAS  PubMed  Google Scholar 

  6. Mouterde T, Keerthi A, Poggioli AR, Dar SA, Siria A, Geim AK, Bocquet L, Radha B. Nature, 2019, 567: 87–90

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Tian Y, Jiang L. Nano Today, 2016, 11: 61–81

    Article  CAS  Google Scholar 

  8. Lin CY, Combs C, Su YS, Yeh LH, Siwy ZS. J Am Chem Soc, 2019, 141: 3691–3698

    Article  CAS  PubMed  Google Scholar 

  9. **e G, Li P, Zhao Z, Zhu Z, Kong XY, Zhang Z, **ao K, Wen L, Jiang L. Am Chem Soc, 2018, 140: 4552–4559

    Article  CAS  Google Scholar 

  10. Vlassiouk I, Siwy ZS. Nano Lett, 2007, 7: 552–556

    Article  CAS  PubMed  Google Scholar 

  11. Powell MR, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens CC, Eisenberg RS, Siwy ZS. Nat Nanotech, 2008, 3: 51–57

    Article  CAS  Google Scholar 

  12. Zhang H, Hou J, Ou R, Hu Y, Wang H, Jiang L. Nanoscale, 2017, 9: 7297–7304

    Article  CAS  PubMed  Google Scholar 

  13. Wang D, Kvetny M, Liu J, Brown W, Li Y, Wang G. Am Chem Soc, 2012, 134: 3651–3654

    Article  CAS  Google Scholar 

  14. Zhang P, **a M, Zhuge F, Zhou Y, Wang Z, Dong B, Fu Y, Yang K, Li Y, He Y, Scheicher RH, Miao XS. Nano Lett, 2019, 19: 4279–4286

    Article  CAS  PubMed  Google Scholar 

  15. Acar ET, Buchsbaum SF, Combs C, Fornasiero F, Siwy ZS. Sci Adv, 2019, 5: eaav2568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Haywood DG, Saha-Shah A, Baker LA, Jacobson SC. Anal Chem, 2015, 87: 172–187

    Article  CAS  PubMed  Google Scholar 

  17. Wei C, Bard AJ, Feldberg SW. Anal Chem, 1997, 69: 4627–4633

    Article  CAS  Google Scholar 

  18. Luo L, Holden DA, Lan WJ, White HS. ACS Nano, 2012, 6: 6507–6514

    Article  CAS  PubMed  Google Scholar 

  19. Luo L, Holden DA, White HS. ACS Nano, 2014, 8: 3023–3030

    Article  CAS  PubMed  Google Scholar 

  20. Wang D, Liu J, Kvetny M, Li Y, Brown W, Wang G. Chem Sci, 2014, 5: 1827–1832

    Article  CAS  Google Scholar 

  21. Wang J, Fang R, Hou J, Zhang H, Tian Y, Wang H, Jiang L. ACS Nano, 2017, 11: 3022–3029

    Article  CAS  PubMed  Google Scholar 

  22. Deng XL, Takami T, Son JW, Kawai T, Park BH. J Phys Chem C, 2012, 116: 14857–14862

    Article  CAS  Google Scholar 

  23. Wang D, Brown W, Li Y, Kvetny M, Liu J, Wang G. ChemElectroChem, 2018, 5: 3089–3095

    Article  CAS  Google Scholar 

  24. Siwy Z. Adv Funct Mater, 2006, 16: 735–746

    Article  CAS  Google Scholar 

  25. Liu Q, Wang Y, Guo W, Ji H, Xue J, Ouyang Q. Phys Rev E, 2007, 75: 051201

    Article  CAS  Google Scholar 

  26. Liu M, Zhang H, Li K, Heng L, Wang S, Tian Y, Jiang L. Adv Funct Mater, 2015, 25: 421–426

    Article  CAS  Google Scholar 

  27. Cai SL, Cao SH, Zheng YB, Zhao S, Yang JL, Li YQ. Biosens Bioelectron, 2015, 71: 37–43

    Article  CAS  PubMed  Google Scholar 

  28. Guo Z, Wang J, Ren J, Wang E. Nanoscale, 2011, 3: 3767–3773

    Article  CAS  PubMed  Google Scholar 

  29. Siwy ZS, Howorka S. Chem Soc Rev, 2010, 39: 1115–1132

    Article  CAS  PubMed  Google Scholar 

  30. **ao K, Wen L, Jiang L. Small, 2016, 12: 2810–2831

    Article  CAS  PubMed  Google Scholar 

  31. Wen L, Jiang L. Natl Sci Rev, 2014, 1: 144–156

    Article  CAS  Google Scholar 

  32. Li T, He X, Yu P, Mao L. Electroanalysis, 2015, 27: 879–883

    Article  CAS  Google Scholar 

  33. Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS. Anal Chem, 2007, 79: 4778–4787

    Article  CAS  PubMed  Google Scholar 

  34. ** P, Mukaibo H, Horne LP, Bishop GW, Martin CR. J Am Chem Soc, 2010, 132: 2118–2119

    Article  CAS  PubMed  Google Scholar 

  35. Lemay SG, van den Broek DM, Storm AJ, Krapf D, Smeets RMM, Heering HA, Dekker C. Anal Chem, 2005, 77: 1911–1915

    Article  CAS  PubMed  Google Scholar 

  36. Wu MY, Krapf D, Zandbergen M, Zandbergen H, Batson PE. Appl Phys Lett, 2005, 87: 113106

    Article  CAS  Google Scholar 

  37. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. Nature, 2001, 412: 166–169

    Article  CAS  PubMed  Google Scholar 

  38. Ma J, Li K, Li Z, Qiu Y, Si W, Ge Y, Sha J, Liu L, **e X, Yi H, Ni Z, Li D, Chen Y. J Am Chem Soc, 2019, 141: 4264–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng J, Liu K, Graf M, Dumcenco D, Kis A, Di Ventra M, Radenovic A. Nat Mater, 2016, 15: 850–855

    Article  CAS  PubMed  Google Scholar 

  40. Kim MJ, McNally B, Murata K, Meller A. Nanotechnology, 2007, 18: 205302

    Article  CAS  Google Scholar 

  41. Gunderson CG, Barlow ST, Zhang B. J Electroanal Chem, 2019, 833: 181–188

    Article  CAS  Google Scholar 

  42. Duan C, Majumdar A. Nat Nanotech, 2010, 5: 848–852

    Article  CAS  Google Scholar 

  43. Yusko EC, An R, Mayer M. ACS Nano, 2010, 4: 477–487

    Article  CAS  PubMed  Google Scholar 

  44. Qiu Y, Lucas RA, Siwy ZS. J Phys Chem Lett, 2017, 8: 3846–3852

    Article  CAS  PubMed  Google Scholar 

  45. Ali M, Schiedt B, Healy K, Neumann R, Ensinger W. Nanotechnology, 2008, 19: 085713

    Article  CAS  PubMed  Google Scholar 

  46. Siwy Z, Apel P, Baur D, Dobrev DD, Korchev YE, Neumann R, Spohr R, Trautmann C, Voss KO. Surf Sci, 2003, 532–535: 1061–1066

    Article  CAS  Google Scholar 

  47. Woermann D. Phys Chem Chem Phys, 2004, 6: 3130–3132

    Article  CAS  Google Scholar 

  48. Wu X, Ramiah Rajasekaran P, Martin CR. ACS Nano, 2016, 10: 4637–4643

    Article  CAS  PubMed  Google Scholar 

  49. Powell MR, Cleary L, Davenport M, Shea KJ, Siwy ZS. Nat Nanotech, 2011, 6: 798–802

    Article  CAS  Google Scholar 

  50. Wang D, Mirkin MV. J Am Chem Soc, 2017, 139: 11654–11657

    Article  CAS  PubMed  Google Scholar 

  51. Ying YL, Hu YX, Gao R, Yu RJ, Gu Z, Lee LP, Long YT. J Am Chem Soc, 2018, 140: 5385–5392

    Article  CAS  PubMed  Google Scholar 

  52. Nascimento RAS, Özel RE, Mak WH, Mulato M, Singaram B, Pourmand N. Nano Lett, 2016, 16: 1194–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song J, Xu CH, Huang SZ, Lei W, Ruan YF, Lu HJ, Zhao W, Xu JJ, Chen HY. Angew Chem Int Ed, 2018, 57: 13226–13230

    Article  CAS  Google Scholar 

  54. Zhang K, He X, Liu Y, Yu P, Fei J, Mao L. Anal Chem, 2017, 89: 6794–6799

    Article  CAS  PubMed  Google Scholar 

  55. Chang F, Chen C, **e X, Chen L, Li M, Zhu Z. Chem Commun, 2015, 51: 15316–15319

    Article  CAS  Google Scholar 

  56. Liu S, Dong Y, Zhao W, **e X, Ji T, Yin X, Liu Y, Liang Z, Momotenko D, Liang D, Girault HH, Shao Y. Anal Chem, 2012, 84: 5565–5573

    Article  CAS  PubMed  Google Scholar 

  57. He X, Zhang K, Li T, Jiang Y, Yu P, Mao L. J Am Chem Soc, 2017, 139: 1396–1399

    Article  CAS  PubMed  Google Scholar 

  58. Zhang S, Yin X, Li M, Zhang X, Zhang X, Qin X, Zhu Z, Yang S, Shao Y. Anal Chem, 2018, 90: 8592–8599

    Article  CAS  PubMed  Google Scholar 

  59. Lin CY, Yeh LH, Siwy ZS. J Phys Chem Lett, 2018, 9: 393–398

    Article  CAS  PubMed  Google Scholar 

  60. Ramírez P, Apel PY, Cervera J, Mafé S. Nanotechnology, 2008, 19: 315707

    Article  PubMed  CAS  Google Scholar 

  61. Apel PY, Blonskaya IV, Orelovitch OL, Ramirez P, Sartowska BA. Nanotechnology, 2011, 22: 175302

    Article  PubMed  CAS  Google Scholar 

  62. Kovarik ML, Zhou K, Jacobson SC. J Phys Chem B, 2009, 113: 15960–15966

    Article  CAS  PubMed  Google Scholar 

  63. Jiang Y, Feng Y, Su J, Nie J, Cao L, Mao L, Jiang L, Guo W. J Am Chem Soc, 2017, 139: 18739–18746

    Article  CAS  PubMed  Google Scholar 

  64. Schoch RB, Han J, Renaud P. Rev Mod Phys, 2008, 80: 839–883

    Article  CAS  Google Scholar 

  65. Siwy Z, Fuliński A. Phys Rev Lett, 2002, 89: 198103

    Article  CAS  PubMed  Google Scholar 

  66. Cheng L, Guo L. Nano Lett, 2007, 7: 3165–3171

    Article  CAS  PubMed  Google Scholar 

  67. Jung JY, Joshi P, Petrossian L, Thornton TJ, Posner JD. Anal Chem, 2009, 81: 3128–3133

    Article  CAS  PubMed  Google Scholar 

  68. Siwy Z, Heins E, Harrell CC, Kohli P, Martin CR. J Am Chem Soc, 2004, 126: 10850–10851

    Article  CAS  PubMed  Google Scholar 

  69. Daiguji H. Chem Soc Rev, 2010, 39: 901–911

    Article  CAS  PubMed  Google Scholar 

  70. Liu J, Wang D, Kvetny M, Brown W, Li Y, Wang G. Langmuir, 2013, 29: 8743–8752

    Article  CAS  PubMed  Google Scholar 

  71. He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS. J Am Chem Soc, 2009, 131: 5194–5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. He X, Zhang K, Liu Y, Wu F, Yu P, Mao L. Angew Chem Int Ed, 2018, 57: 4590–4593

    Article  CAS  Google Scholar 

  73. White HS, Bund A. Langmuir, 2008, 24: 2212–2218

    Article  CAS  PubMed  Google Scholar 

  74. Lan WJ, Holden DA, White HS. J Am Chem Soc, 2011, 133: 13300–13303

    Article  CAS  PubMed  Google Scholar 

  75. Guerrette JP, Zhang B. J Am Chem Soc, 2010, 132: 17088–17091

    Article  CAS  PubMed  Google Scholar 

  76. Momotenko D, Girault HH. J Am Chem Soc, 2011, 133: 14496–14499

    Article  CAS  PubMed  Google Scholar 

  77. Woermann D. Phys Chem Chem Phys, 2003, 5: 1853–1858

    Article  CAS  Google Scholar 

  78. Jiang X, Liu Y, Qiao R. J Phys Chem C, 2016, 120: 4629–4637

    Article  CAS  Google Scholar 

  79. Poggioli AR, Siria A, Bocquet L. J Phys Chem B, 2019, 123: 1171–1185

    Article  CAS  PubMed  Google Scholar 

  80. Cervera J, Schiedt B, Ramírez P. Europhys Lett, 2005, 71: 35–41

    Article  CAS  Google Scholar 

  81. Cruz-Chu ER, Ritz T, Siwy ZS, Schulten K. Faraday Discuss, 2009, 143: 47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feng J, Graf M, Liu K, Ovchinnikov D, Dumcenco D, Heiranian M, Nandigana V, Aluru NR, Kis A, Radenovic A. Nature, 2016, 536: 197–200

    Article  CAS  PubMed  Google Scholar 

  83. Vlassiouk I, Smirnov S, Siwy Z. Nano Lett, 2008, 8: 1978–1985

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Shan X, Tao N. Faraday Discuss, 2016, 193: 9–39

    Article  CAS  PubMed  Google Scholar 

  85. Yu RJ, Ying YL, Gao R, Long YT. Angew Chem Int Ed, 2019, 58: 3706–3714

    Article  CAS  Google Scholar 

  86. Yu RJ, Ying YL, Hu YX, Gao R, Long YT. Anal Chem, 2017, 89: 8203–8206

    Article  CAS  PubMed  Google Scholar 

  87. Gao R, Ying YL, Hu YX, Li YJ, Long YT. Anal Chem, 2017, 89: 7382–7387

    Article  CAS  PubMed  Google Scholar 

  88. Ying Y, Cao C, Hu Y, Long Y. Natl Sci Rev, 2018, 5: 449–452

    Article  Google Scholar 

  89. Liu Y, Xu C, Yu P, Chen X, Wang J, Mao L. ChemElectroChem, 2018, 5: 2954–2962

    Article  CAS  Google Scholar 

  90. Mirkin MV, Sun T, Yu Y, Zhou M. Acc Chem Res, 2016, 49: 2328–2335

    Article  CAS  PubMed  Google Scholar 

  91. Yin H, Marshall D. Curr Opin Biotech, 2012, 23: 110–119

    Article  CAS  PubMed  Google Scholar 

  92. Lan WJ, Holden DA, Zhang B, White HS. Anal Chem, 2011, 83: 3840–3847

    Article  CAS  PubMed  Google Scholar 

  93. Li T, He X, Zhang K, Wang K, Yu P, Mao L. Chem Sci, 2016, 7: 6365–6368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shi W, Friedman AK, Baker LA. Anal Chem, 2017, 89: 157–188

    Article  CAS  PubMed  Google Scholar 

  95. Gu Z, Ying YL, Long YT. Sci China Chem, 2018, 61: 1483–1485

    Article  CAS  Google Scholar 

  96. Luo L, German SR, Lan WJ, Holden DA, Mega TL, White HS. Annu Rev Anal Chem, 2014, 7: 513–535

    Article  CAS  Google Scholar 

  97. **a F, Guo W, Mao Y, Hou X, Xue J, **a H, Wang L, Song Y, Ji H, Ouyang Q, Wang Y, Jiang L. J Am Chem Soc, 2008, 130: 8345–8350

    Article  CAS  PubMed  Google Scholar 

  98. Gao L, Li P, Zhang Y, **ao K, Ma J, **e G, Hou G, Zhang Z, Wen L, Jiang L. Small, 2015, 11: 543–547

    Article  CAS  PubMed  Google Scholar 

  99. Zhai Q, Zhang S, Jiang H, Wei Q, Wang E, Wang J. J Mater Chem B, 2014, 2: 6371–6377

    Article  CAS  PubMed  Google Scholar 

  100. Tian Y, Hou X, Wen L, Guo W, Song Y, Sun H, Wang Y, Jiang L, Zhu D. Chem Commun, 2010, 46: 1682–1684

    Article  CAS  Google Scholar 

  101. Hou X, Guo W, **a F, Nie FQ, Dong H, Tian Y, Wen L, Wang L, Cao L, Yang Y, Xue J, Song Y, Wang Y, Liu D, Jiang L. J Am Chem Soc, 2009, 131: 7800–7805

    Article  CAS  PubMed  Google Scholar 

  102. Liu Q, **ao K, Wen L, Lu H, Liu Y, Kong XY, **e G, Zhang Z, Bo Z, Jiang L. J Am Chem Soc, 2015, 137: 11976–11983

    Article  CAS  PubMed  Google Scholar 

  103. Liu Q, **ao K, Wen L, Dong Y, **e G, Zhang Z, Bo Z, Jiang L. ACS Nano, 2014, 8: 12292–12299

    Article  CAS  PubMed  Google Scholar 

  104. **e G, **ao K, Zhang Z, Kong XY, Liu Q, Li P, Wen L, Jiang L. Angew Chem Int Ed, 2015, 54: 13664–13668

    Article  CAS  Google Scholar 

  105. Han C, Hou X, Zhang H, Guo W, Li H, Jiang L. J Am Chem Soc, 2011, 133: 7644–7647

    Article  CAS  PubMed  Google Scholar 

  106. Xu Y, Sui X, Guan S, Zhai J, Gao L. Adv Mater, 2015, 27: 1851–1855

    Article  CAS  PubMed  Google Scholar 

  107. Karhanek M, Kemp JT, Pourmand N, Davis RW, Webb CD. Nano Lett, 2005, 5: 403–407

    Article  CAS  PubMed  Google Scholar 

  108. Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O. J Am Chem Soc, 2008, 130: 16351–16357

    Article  CAS  PubMed  Google Scholar 

  109. Bulbul G, Chaves G, Olivier J, Ozel RE, Pourmand N. Cells, 2018, 7: 55

    Article  PubMed Central  CAS  Google Scholar 

  110. Özel RE, Lohith A, Mak WH, Pourmand N. RSC Adv, 2015, 5: 52436–52443

    Article  PubMed  CAS  Google Scholar 

  111. Burns JR, Seifert A, Fertig N, Howorka S. Nat Nanotech, 2016, 11: 152–156

    Article  CAS  Google Scholar 

  112. Ying YL, Gao R, Hu YX, Long YT. Small Methods, 2018, 2: 1700390

    Article  CAS  Google Scholar 

  113. Yang L, Zhai Q, Li G, Jiang H, Han L, Wang J, Wang E. Chem Commun, 2013, 49: 11415–11417

    Article  CAS  Google Scholar 

  114. Laohakunakorn N, Thacker VV, Muthukumar M, Keyser UF. Nano Lett, 2015, 15: 695–702

    Article  CAS  PubMed  Google Scholar 

  115. Macias-Romero C, Nahalka I, Okur HI, Roke S. Science, 2017, 357: 784–788

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21775151, 21790053, 21475138 for P.Y., 21790390, 21790391, 21435007, 21621062 for L.M.), the National Basic Research Program of China (2016YFA0200104), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000), and the Chinese Academy of Sciences (QYZDJSSW-SLH030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ** Yu or Lanqun Mao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, T., Zhang, K., Jiang, Y. et al. Ion current rectification: from nanoscale to microscale. Sci. China Chem. 62, 1346–1359 (2019). https://doi.org/10.1007/s11426-019-9526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9526-4

Keywords

Navigation