Log in

Predicting hiCE inhibitors based upon pharmacophore models derived from the receptor and its ligands

  • Articles
  • Special Topic Chemistry for Life Sciences
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Human intestinal carboxyl esterase (hiCE) is a drug target for ameliorating irinotecan-induced diarrhea. By reducing irinotecan-induced diarrhea, hiCE inhibitors can improve the anti-cancer efficacy of irinotecan. To find effective hiCE inhibitors, a new virtual screening protocol that combines pharmacophore models derived from the hiCE structure and its ligands has been proposed. The hiCE structure has been constructed through homology techniques using hCES1’s crystal structure. The hiCE structure was optimized via molecular dynamics simulations with the most known active hiCE inhibitors docked into the structure. An optimized pharmacophore, derived from the receptor, was then generated. A ligand-based pharmacophore was also generated from a larger set of known hiCE inhibitors. The final hiCE inhibitor predictions were based upon the virtual screening hits from both ligand-based and receptor-based pharmacophore models. The hit rates from the ligand-based and receptor-based pharmacophore models are 88% and 86%, respectively. The final hit rate is 94%. The two models are highly consistent with one another (85%). This proves that both models are reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsuruo T, Matsuzaki T, Matsushita M, Saito H, Yokokura T. Antitumor effect of CPT-11, a new derivative of camptothecin, against pleiotropic drug-resistant tumors in vitro and in vivo. Cancer Chemother Pharmacol, 1988, 21: 71–74

    Article  CAS  Google Scholar 

  2. Tanizawa A, Fujimori A, Fujimori Y, Pommier Y. Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J Natl Cancer Inst, 1994, 86: 836–842

    Article  CAS  Google Scholar 

  3. Satoh T, Hosokawa M, Atsumi R, Suzuki W, Hakusui H, Nagai E. Metabolic activation of CPT-11, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin, a novel antitumor agent, by carboxylesterase. Biol Pharm Bull, 1994, 17: 662–664

    Article  CAS  Google Scholar 

  4. Sawada S, Yokokura T, Miyasaka T. Synthesis of CPT-11 (irinotecan hydrochloride trihydrate). Ann NY Acad Sci, 1996, 803: 13–28

    Article  CAS  Google Scholar 

  5. Thompson J, Zamboni WC, Cheshire PJ, Lutz L, Luo X, Li Y, Houghton JA, Stewart CF, Houghton PJ. Efficacy of systemic administration of irinotecan against neuroblastoma xenografts. Clin Cancer Res, 1997, 3: 423–431

    CAS  Google Scholar 

  6. Furman WL, Stewart CF, Poquette CA, Pratt CB, Santana VM, Zamboni WC, Bowman LC, Ma MK, Hoffer FA, Meyer WH, Pappo AS, Walter AW, Houghton PJ. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol, 1999, 17: 1815–1824

    CAS  Google Scholar 

  7. Houghton PJ, Cheshire PJ, Hallman II JD, Lutz L, Friedman HS, Danks MK, Houghton JA. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol, 1995, 36: 393–403

    Article  CAS  Google Scholar 

  8. Fukuoka M, Niitani H, Suzuki A, Motomiya M, Hasegawa K, Nishiwaki Y, Kuriyama T, Ariyoshi Y, Negoro S, Masuda N. A phase II study of CPT-11, a new derivative of camptothecin, for previously untreated non-small-cell lung cancer. J Clin Oncol, 1992, 10: 16–20

    CAS  Google Scholar 

  9. Kobayashi K, Shinbara A, Kamimura M, Takeda Y, Kudo K, Kabe J, Hibino S, Hino M, Shibuya M, Kudoh S. Irinotecan (CPT-11) in combination with weekly administration of cisplatin (CDDP) for non-small-cell lung cancer. Cancer Chemother Pharmacol, 1998, 42: 53–58

    Article  CAS  Google Scholar 

  10. Wadkins RM, Hyatt JL, Yoon KJ, Morton CL, Lee RE, Damodaran K, Beroza P, Danks MK, Potter PM. Discovery of novel selective inhibitors of human intestinal carboxylesterase for the amelioration of irinotecan-induced diarrhea: Synthesis, quantitative structure-activity relationship analysis, and biological activity. Mol Pharmacol, 2004, 65: 1336–1343

    Article  CAS  Google Scholar 

  11. Chu XY, Kato Y, Sugiyama Y. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res, 1997, 57: 1934–1938

    CAS  Google Scholar 

  12. Lokiec F, Canal P, Gay C, Chatelut E, Armand JP, Roche H, Bugat R, Goncalves E, Mathieu-Boue A. Pharmacokinetics of irinotecan and its metabolites in human blood, bile, and urine. Cancer Chemother Pharmacol, 1995, 36: 79–82

    Article  CAS  Google Scholar 

  13. Khanna R, Morton CL, Danks MK, Potter PM. Proficient metabolism of irinotecan by a human intestinal carboxylesterase. Cancer Res, 2000, 60: 4725–4728

    CAS  Google Scholar 

  14. Hicks LD, Hyatt JL, Moak T, Edwards CC, Tsurkan L, Wierdl M, Ferreira AM, Wadkins RM, Potter P M. Analysis of the inhibition of mammalian carboxylesterases by novel fluorobenzoins and fluorobenzils. Bioorg Med Chem, 2007, 15: 3801–3817

    Article  CAS  Google Scholar 

  15. Hicks LD, Hyatt JL, Stoddard S, Tsurkan L, Edwards CC, Wadkins RM, Potter PM. Improved, selective, human intestinal carboxylesterase inhibitors designed to modulate 7-ethyl-10-[4-(1-piperidino)-1-piperi-dino]carbonyloxycamptothecin (Irinotecan; CPT-11) toxicity. J Med Chem, 2009, 52: 3742–3752

    Article  CAS  Google Scholar 

  16. Hyatt JL, Moak T, Hatfield MJ, Tsurkan L, Edwards CC, Wierdl M, Danks MK, Wadkins RM, Potter PM. Selective inhibition of carboxylesterases by isatins, indole-2,3-diones. J Med Chem, 2007, 50: 1876–1885

    Article  CAS  Google Scholar 

  17. Hyatt JL, Tsurkan L, Wierdl M, Edwards CC, Danks MK, Potter PM. Intracellular inhibition of carboxylesterases by benzil: Modulation of CPT-11 cytotoxicity. Mol Cancer Ther, 2006, 5: 2281–2288

    Article  CAS  Google Scholar 

  18. Hyatt JL, Stacy V, Wadkins RM, Yoon KJ, Wierdl M, Edwards CC, Zeller M, Hunter AD, Danks MK, Crundwell G, Potter PM. Inhibition of carboxylesterases by benzil (diphenylethane-1,2-dione) and heterocyclic analogues is dependent upon the aromaticity of the ring and the flexibility of the dione moiety. J Med Chem, 2005, 48: 5543–5550

    Article  CAS  Google Scholar 

  19. Hyatt JL, Wadkins RM, Tsurkan L, Hicks LD, Hatfield MJ, Edwards CC, Ross II CR, Cantalupo SA, Crundwell G, Danks MK, Guy RK, Potter PM. Planarity and constraint of the carbonyl groups in 1,2-diones are determinants for selective inhibition of human carboxylesterase 1. J Med Chem, 2007, 50: 5727–5734

    Article  CAS  Google Scholar 

  20. Young BM, Hyatt JL, Bouck DC, Chen T, Hanumesh P, Price J, Boyd VA, Potter PM, Webb TR. Structure-activity relationships of substituted 1-pyridyl-2-phenyl-1,2-ethanediones: Potent, selective carboxylesterase inhibitors. J Med Chem, 2010, 53: 8709–8715

    Article  CAS  Google Scholar 

  21. Hatfield MJ, Potter PM. Carboxylesterase inhibitors. Expert Opin Ther Pat, 2011, 21: 1159–1171

    Article  CAS  Google Scholar 

  22. Yoon KJ, Hyatt JL, Morton CL, Lee RE, Potter PM, Danks MK. Characterization of inhibitors of specific carboxylesterases: Development of carboxylesterase inhibitors for translational application. Cancer Res, 2004, 3: 903–909

    CAS  Google Scholar 

  23. Wadkins RM, Hyatt JL, Wei X, Yoon KJ, Wierdl M, Edwards CC, Morton CL, Obenauer JC, Damodaran K, Beroza P, Danks MK, Potter PM. Identification and characterization of novel benzil (diphenylethane-1,2-dione) analogues as inhibitors of mammalian carboxylesterases. J Med Chem, 2005, 48: 2906–2915

    Article  CAS  Google Scholar 

  24. Bencharit S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, Redinbo MR. Crystal structure of human carboxylesterase 1 complexed with the alzheimer’s drug tacrine. Chem Biol, 2003, 10: 341–349

    Article  CAS  Google Scholar 

  25. Wadkins RM, Hyatt JL, Edwards CC, Tsurkan L, Redinbo MR, Wheelock CE, Jones PD, Hammock BD, Potter PM. Analysis of mammalian carboxylesterase inhibition by trifluoromethyl ketone containing compounds. Mol Pharmacol, 2006, 71: 713–723

    Article  Google Scholar 

  26. Beroza P, Damodaran K, Lum RT. Target-related affinity profiling: Telik’s lead discovery technology. Curr Top Med Chem, 2005, 5: 371–381

    Article  CAS  Google Scholar 

  27. Kauvar LM, Higgins DL, Villar HO, Sportsman JR, Engqvist-Goldstein A, Bukar R, Bauer KE, Dilley H, Rocke DM. Predicting ligand binding to proteins by affinity fingerprinting. Chem Biol, 1995, 2: 107–118

    Article  CAS  Google Scholar 

  28. Beroza P, Villar HO, Wick MM, Martin GR. Chemoproteomics as a basis for post-genomic drug discovery. Drug Discov Today, 2002, 7: 807–814

    Article  CAS  Google Scholar 

  29. Beaufay H, Amar-Costesec A, Thinès-Sempoux D, Wibo M, Robbi M, Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. J Cell Biol, 1974, 61: 188–200

    Article  CAS  Google Scholar 

  30. Potter PM, Pawlik CA, Morton CL, Naeve CW, Danks MK. Isolation and partial characterization of a cDNA encoding a rabbit liver carboxylesterase that activates the prodrug Irinotecan (CPT-11). Cancer Res, 1998, 52: 2646–2651

    Google Scholar 

  31. Zhao W, Gu Q, Wang L, Ge H, Li J, Xu J. Three-dimensional pharmacophore modeling of liver-x receptor agonists. J Chem Inf Model, 2011, 51: 2147–2155

    Article  CAS  Google Scholar 

  32. Huang D, Gu Q, Ge H, Ye J, Salam NK, Hagler A, Chen H, Xu J. On the value of homology models for virtual screening: Discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches. J Chem Inf Model, 2012, 52: 1356–1366

    Article  CAS  Google Scholar 

  33. Environment(Moe) M O, Version 2010. Chemical Computing Group, InC. Montreal, QC, 2010

    Google Scholar 

  34. Shoichet JI, Shoichet BK. ZINC-A free database of commercially available compounds for virtual screening. J Chem Inf Model, 2004, 45: 177–182

    Google Scholar 

  35. Vistoli G, Pedretti A, Mazzolari A, Testa B. Homology modeling and metabolism prediction of human carboxylesterase-2 using docking analyses by GriDock: A parallelized tool based on AutoDock 4.0. J Comput Aid Mol Des, 2010, 24: 771–787

    Article  CAS  Google Scholar 

  36. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J Med Chem, 2012, 55: 6582–6594

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Gu or Jun Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Ge, H., Gu, Q. et al. Predicting hiCE inhibitors based upon pharmacophore models derived from the receptor and its ligands. Sci. China Chem. 56, 1402–1412 (2013). https://doi.org/10.1007/s11426-013-4952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4952-3

Keywords

Navigation