Log in

Car-Parinello molecular dynamics simulations of thionitroxide and S-nitrosothiol in the gas phase, methanol, and water—A theoretical study of S-nitrosylation

  • Articles
  • Special Topic Physical Organic Chemistry in China
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A dilemma about whether thionitroxide radical (RSNHO) or S-nitrosothiol (RSNO) is observed in protein S-nitrosylation has arisen recently. To illustrate the effect of chemical environment on these structures, this paper presents quantum mechanical molecular dynamics of thionitroxide, and cis- and trans-S-nitrosothiols in the gas phase, methanol, and water. By using Car-Parrinello molecular dynamics (CPMD), we have observed that there is free rotation about the S-N bond at 300 K in thionitroxide, but no such rotation is observed for S-nitrosothiol. The C-S-N-O torsion angle distribution in thionitroxide is significantly dependent upon the surrounding environment, leading to either gauche-, cis-, or trans-conformation. In the case of S-nitrosothiol the C-S-N-O plane is twisted slightly by 5°–15° in the cis-isomer, while the periplanar structure is well-retained in the trans-isomer. The calculated results are in agreement with the X-ray crystallographic data of small molecular RSNO species. Interestingly, for both compounds, the CPMD simulations show that solvation can cause a decrease in the S-N bond length. Moreover, the oxygen atom of thionitroxide is found to be a good hydrogen-bond acceptor, forming an oxyanionhole-like hydrogen bonding network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: Purview and parameters. Nat Rev Mol Cell Biol, 2005, 6: 150–166

    Article  CAS  Google Scholar 

  2. Zhao YL, Houk KN. Thionitroxides RSNHO: The structure of the SNO moiety in “S-nitrosohemoglobin” a possible NO reservoir and transporter. J Am Chem Soc, 2006, 128: 1422–1423

    Article  CAS  Google Scholar 

  3. Salgado MT, Ramasamy S, Tsuneshige A, Manoharan PT, Rifkind JM. A new paramagnetic intermediate formed during the reaction of nitrite with deoxyhemoglobin. J Am Chem Soc, 2011, 133: 13010–13022

    Article  CAS  Google Scholar 

  4. Timerghazin QK, Peslherbe GH, English AM. Structure and stability of HSNO the simplest S-nitrosothiol. Phys Chem Chem Phys, 2008, 10: 1532–1539

    Article  CAS  Google Scholar 

  5. Zhao YL, McCarren PR, Houk KN, Choi BY, Toone EJ. Nitrosoniumcatalyzed decomposition of S-nitrosothiols in solution: A theoretical and experimental study. J Am Chem Soc, 2005, 127: 10917–10924

    Article  CAS  Google Scholar 

  6. Spivey AC, Colley J, Sprigens L, Hancock SM, Cameron DS, Chigboh KI, Veitch G, Frampton CS, Adams H. The synthesis of water soluble decalin-based thiols and S-nitrosothiols — Model systems for studying the reactions of nitric oxide with protein thiols. Org Biomol Chem, 2005, 3: 1942–1952

    Article  CAS  Google Scholar 

  7. Goto K, Hino Y, Kawashima T, Kaminaga M, Yano E, Yamamoto G, Takagi N, Nagase S. Synthesis and crystal structure of a stable S-nitrosothiol bearing a novel steric protection group and of the corresponding S-nitrothiol. Tetrahedron Lett, 2000, 41: 8479–8483

    Article  CAS  Google Scholar 

  8. Shafirovich V, Lymar SV Nitroxyl and its anion in aqueous solutions: Spin states protic equilibria and reactivities toward oxygen and nitric oxide. Proc Natl Acad Sci USA, 2002, 99: 7340–7345

    Article  CAS  Google Scholar 

  9. Guthrie DA, Kim NY, Siegler MA, Moore CD, Toscano JP. Development of N-substituted hydroxylamines as efficient nitroxyl (HNO) donors. J Am Chem Soc, 2012, 134: 1962–1965

    Article  CAS  Google Scholar 

  10. Timerghazin QK, Peslherbe GH, English AM. Resonance description of S-nitrosothiols: Insights into reactivity. Org Lett, 2007, 9: 3049–3052

    Article  CAS  Google Scholar 

  11. Bartberger MD, Houk KN, Powell SC, Mannion JD, Lo KY, Stamler JS, Toone EJ. Theory spectroscopy and crystallographic analysis of S-nitrosothiols: Conformational distribution dictates spectroscopic behavior. J Am Chem Soc, 2000, 122: 5889–5890

    Article  CAS  Google Scholar 

  12. Lai C-H, Chou P-T. The theoretical comparison between two model NO carriers MeSNO and MeSeNO. J Molec Model, 2008, 14: 1–9

    Article  CAS  Google Scholar 

  13. Li HZ, Tao W, Gao T, Li H, Lu YH, Su ZM. Improving the accuracy of density functional theory (DFT) calculation for homolysis bond dissociation energies of Y-NO bond: Generalized regression neural network based on grey relational analysis and principal component analysis. Int J Mol Sci, 2011, 12, 2242–2261

    Article  CAS  Google Scholar 

  14. da Silva G, Kennedy EM, Dlugogorski BZ. Ab initio study of bonding between nucleophilic species and the nitroso group. J Phys Chem A, 2007, 111: 1300–1306

    Article  Google Scholar 

  15. de Oliveira MG, Shishido SM, Seabra AB, Morgon NH. Thermal stability of primary S-nitrosothiols: Roles of autocatalysis and structural effects on the rate of nitric oxide release. J Phys Chem A, 2002, 106: 8963–8970

    Article  Google Scholar 

  16. Fu Y, Mou Y, Lin BL, Liu L, Guo QX. Structures of the X-Y-NO molecules and homolytic dissociation energies of the Y-NO bonds (Y = C N O S). J Phys Chem A, 2002, 106: 12386–12392

    Article  CAS  Google Scholar 

  17. Baciu C, Gauld JW. An assessment of theoretical methods for the calculation of accurate structures and S-N bond dissociation energies of S-nitrosothiols (RSNOs). J Phys Chem A, 2003, 107: 9946–9952

    Article  CAS  Google Scholar 

  18. Lai C-H, Chou P-T. A theoretical study of thermodynamics and kinetics of nitrosamines: A potential NO carrier. Theor Chem Acc, 2008. 119: 453–462

    Article  CAS  Google Scholar 

  19. Li X, Deng H, Zhu X-Q, Wang X, Liang H, Cheng J-P. Establishment of the C-NO bond dissociation energy scale in solution and its application in analyzing the trend of NO transfer from C-nitroso compound to thiols. J Org Chem, 2009, 74: 4472–4478

    Article  CAS  Google Scholar 

  20. Rogers DW, Zavitsas AA, Matsunaga N. Effects of molecule stabilization energies on radical reactions: G3 and G3(MP2) model chemistries applied to benzylic systems. J Phys Chem A, 2009, 113: 12049–12055

    Article  CAS  Google Scholar 

  21. Lu JM, Wittbrodt JM, Wang K, Wen Z, Schlegel HB, Wang PG, Cheng JP. NO affinities of S-nitrosothiols: A direct experimental and computational investigation of RS-NO bond dissociation energies. J Am Chem Soc, 2001, 123: 2903–2904

    Article  CAS  Google Scholar 

  22. Angelo M, Singel DJ, Stamler JS. An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc Natl Acad Sci USA, 2006, 103: 8366–8371

    Article  CAS  Google Scholar 

  23. Doctor A, Gaston B. Detecting physiologic fluctuations in the S-nitrosohemoglobin micropopulation: Triiodide versus 3C. Blood, 2006, 108: 3225–3226

    Article  CAS  Google Scholar 

  24. Fukuto JM, Collins MD. Interactive endogenous small molecule (gaseous) signaling: Implications for teratogenesis. Curr Pharmaceut Des, 2007, 13: 2952–2978

    Article  CAS  Google Scholar 

  25. Paolocci N, Jackson MI, Lopez BE, Miranda K, Tocchetti CG, Wink DA, Hobbs AJ, Fukuto JM. The pharmacology of nitroxyl (HNO) and its therapeutic potential: Not just the Janus face of NO. Pharmacol Therapeut, 2007, 113: 442–458

    Article  CAS  Google Scholar 

  26. Schreiter ER, Rodriguez MM, Weichsel A, Montfort WR, Bonaventura J. S-nitrosylation-induced conformational change in blackfin tuna myoglobin. J Biol Chem, 2007, 282: 19773–19780

    Article  CAS  Google Scholar 

  27. Neugebauer J, Louwerse MJ, Belanzoni P, Wesolowski TA, Baerends EJ. Modeling solvent effects on electron-spin-resonance hyperfine couplings by frozen-density embedding. J Chem Phys, 2005, 123: 114101

    Article  Google Scholar 

  28. Asher J R, Kaupp M. Car-Parrinello molecular dynamics simulations and EPR property calculations on aqueous ubisemiquinone radical anion. Theor Chem Acc 2008 119 477–487

    Article  CAS  Google Scholar 

  29. Bucher D, Sandala GM, Durbeej B, Radom L, Smith DM. The elusive 5′-deoxyadenosyl radical in coenzyme-B12-mediated reactions. J Am Chem Soc, 2012, 134: 1591–1599

    Article  CAS  Google Scholar 

  30. Gunaydin H, Houk KN. Molecular dynamics simulation of the HOONO decomposition and the HO·/NO2·caged radical pair in water J Am Chem Soc, 2008, 130: 1003

    Article  Google Scholar 

  31. Costanzo F, Sulpizi M, Della Valle RG, Sprik M. First principles study of alkali-tyrosine complexes: Alkali solvation and redox properties. J Chem Theory Comp, 2008, 4: 1049–1056

    Article  CAS  Google Scholar 

  32. CPMD version 3.15. Copyright IBM Corp. 1990–2008. Copyright MPI fur Festkrperforschung Stuttgart 1997–2001. http://www.cpmd.org/

  33. Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 1985, 55: 2471–2474

    Article  CAS  Google Scholar 

  34. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  CAS  Google Scholar 

  35. Chengteh L, Weitao Y, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter, 1988, 37: 785–789789

    Article  Google Scholar 

  36. Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B Condens Matter, 1991, 43: 8861–8869

    Article  Google Scholar 

  37. Kleinman L, Bylander DM. Efficacious form for model pseudopotentials. Phys Rev Lett, 1982, 48: 1425–1428

    Article  CAS  Google Scholar 

  38. VandeVondele J, Mohamed F, Krack M, Hutter J, Sprik M, Parrinello M. The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. J Chem Phys, 2005, 122: 014515

    Article  Google Scholar 

  39. Rowland RS, Taylor R. Intermolecular nonbonded contact distances in organic crystal structures: Comparison with distances expected from van der Waals radii. J Physl Chem, 1996, 100: 7384–7391

    Article  CAS  Google Scholar 

  40. Chan NL, Kavanaugh JS, Rogers PH, Arnone A. Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin. Biochemistry, 2004, 43: 118–132

    Article  CAS  Google Scholar 

  41. Chan NL, Rogers PH, Arnone A. Crystal structure of the S-nitroso form of liganded human hemoglobin. Biochemistry, 1998, 37: 16459–16464

    Article  CAS  Google Scholar 

  42. Denis PA, Ventura ON, Mai HT, Nguyen MT. Ab initio and density functional study of thionitroso XNS and thiazyl isomers XSN X = H, F, Cl, Br, OH, SH, NH2, CH3, CF3 and SiF3. J Phys Chem A, 2004, 108: 5073–5080

    Article  CAS  Google Scholar 

  43. Lu M, Steitz TA. Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 18-Å resolution. Proc Natl Acad Sci USA, 2000, 97: 2023–2028

    Article  CAS  Google Scholar 

  44. Zhang YK, Kua J, McCammon JA. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: An ab initio QM/MM study. J Am Chem Soc, 2002, 124: 10572–10577

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Lei Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Cheng, S., Hou, J. et al. Car-Parinello molecular dynamics simulations of thionitroxide and S-nitrosothiol in the gas phase, methanol, and water—A theoretical study of S-nitrosylation. Sci. China Chem. 55, 2081–2088 (2012). https://doi.org/10.1007/s11426-012-4712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4712-9

Keywords

Navigation