Log in

Sobolev embeddings in infinite dimensions

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study Sobolev spaces in infinite dimensions and the corresponding embedding theorems. Our underlying spaces are r for r ∈ [1, ∞), equipped with corresponding probability measures. For the weighted Sobolev space W 1, pb (r, γa) with a weight ar of the Gaussian measure γa and a gradient weight b, we characterize the relation between the weights (a and b) and the continuous (resp. compact) log-Sobolev embedding for p ∈ [1, ∞) (resp. p ∈ (1, ∞)). Several counterexamples are also constructed, which are of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R A. General logarithmic Sobolev inequalities and Orlicz imbeddings. J Funct Anal, 1979, 34: 292–303

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams R A, Fournier J J F. Sobolev Spaces, 2nd ed. Amsterdam: Academic Press, 2003

    MATH  Google Scholar 

  3. Addona D, Muratori M, Rossi M. On the equivalence of Sobolev norms in Malliavin spaces. J Funct Anal, 2022, 283: 109600

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakry D, Emery M. Diffusions hypercontractives. In: Seminaire de Probabilites. Lecture Notes in Mathematics, vol. 1123. Berlin: Springer, 1985, 117–206

    MATH  Google Scholar 

  5. Barthe F, Kolesnikov A V. Mass transport and variants of the logarithmic Sobolev inequality. J Geom Anal, 2008, 18: 921–979

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennett C, Sharpley R. Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Boston: Academic Press, 1988

    MATH  Google Scholar 

  7. Bentaleb A, Fahlaoui S, Hafidi A. Psi-entropy inequalities for the Ornstein-Uhlenbeck semigroup. Semigroup Forum, 2012, 85: 361–368

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobkov S G. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann Probab, 1997, 25: 206–214

    Article  MathSciNet  MATH  Google Scholar 

  9. Bogachev V I. Gaussian Measures. Providence: Amer Math Soc, 1998

    Book  MATH  Google Scholar 

  10. Bogachev V I. Ornstein-Uhlenbeck operators and semigroups. Russian Math Surveys, 2018, 73: 191–260

    Article  MathSciNet  MATH  Google Scholar 

  11. Bolley F, Gentil I. Phi-entropy inequalities for diffusion semigroups. J Math Pures Appl (9), 2010, 93: 449–473

    Article  MathSciNet  MATH  Google Scholar 

  12. Borell C. The Brunn-Minkowski inequality in Gauss space. Invent Math, 1975, 30: 207–216

    Article  MathSciNet  MATH  Google Scholar 

  13. Chojnowska-Michalik A, Goldys B. Generalized Ornstein-Uhlenbeck semigroups: Littlewood-Paley-Stein inequalities and the P. A. Meyer equivalence of norms. J Funct Anal, 2001, 182: 243–279

    Article  MathSciNet  MATH  Google Scholar 

  14. Cianchi A, Pick L. Optimal Gaussian Sobolev embeddings. J Funct Anal, 2009, 256: 3588–3642

    Article  MathSciNet  MATH  Google Scholar 

  15. Da Prato G. An Introduction to Infinite-Dimensional Analysis. Berlin: Springer-Verlag, 2006

    Book  MATH  Google Scholar 

  16. Da Prato G, Malliavin P, Nualart D. Compact families of Wiener functionals. C R Acad Sci Ser I Math, 1992, 315: 1287–1291

    MathSciNet  MATH  Google Scholar 

  17. Da Prato G, Zabczyk J. Regular densities of invariant measures in Hilbert spaces. J Funct Anal, 1995, 130: 427–449

    Article  MathSciNet  MATH  Google Scholar 

  18. Ehrhard A. Symétrisation dans l’espace de Gauss. Math Scand, 1983, 53: 281–301

    Article  MathSciNet  MATH  Google Scholar 

  19. Feissner G F. Hypercontractive semigroups and Sobolev’s inequality. Trans Amer Math Soc, 1975, 210: 51–62

    MathSciNet  MATH  Google Scholar 

  20. Glimm J, Jaffe A. Boson quantum field models, Part I. General results. In: Quantum Field Theory and Statistical Mechanics. Boston: Birkhauser, 1985, 123–179

    MATH  Google Scholar 

  21. Grafakos L. Classical Fourier Analysis, 2rd ed. New York: Springer, 2014

    Book  MATH  Google Scholar 

  22. Gross L. Logarithmic Sobolev inequalities. Amer J Math, 1975, 97: 1061–1083

    Article  MathSciNet  MATH  Google Scholar 

  23. Hajłasz P, Liu Z M. A compact embedding of a Sobolev space is equivalent to an embedding into a better space. Proc Amer Math Soc, 2010, 138: 3257–3266

    Article  MathSciNet  MATH  Google Scholar 

  24. Ledoux M. Isopérimétrie et inégalités de Sobolev logarithmiques gaussiennes. C R Acad Sci Paris, 1988, 306: 79–82

    MathSciNet  MATH  Google Scholar 

  25. Ledoux M. On an integral criterion for hypercontractivity of diffusion semigroups and extremal functions. J Funct Anal, 1992, 105: 444–465

    Article  MathSciNet  MATH  Google Scholar 

  26. Ledoux M. Isoperimetry and Gaussian analysis. In: Lectures on Probability Theory and Statistics. Lecture Notes in Mathematics, vol. 1648. Berlin: Springer, 1996, 165–294

    Chapter  MATH  Google Scholar 

  27. Ledoux M. A short proof of the Gaussian isoperimetric inequality. Progr Probab, 1998, 43: 229–232

    MathSciNet  MATH  Google Scholar 

  28. Lü Q, Zhang X. Mathematical Control Theory for Stochastic Partial Differential Equations. Cham: Springer, 2021

    Book  MATH  Google Scholar 

  29. Maz’ya V. Sobolev Spaces. Berlin: Springer, 1985

    Book  MATH  Google Scholar 

  30. Nualart D. The Malliavin Calculus and Related Topics, 2nd ed. Berlin: Springer, 2006

    MATH  Google Scholar 

  31. Peszat S. On a Sobolev space of functions of infinite number of variables. Bull Pol Acad Sci Math, 1993, 41: 55–60

    MathSciNet  MATH  Google Scholar 

  32. Rao M, Ren Z D. Theory of Orlicz Spaces. New York: Marcel Dekker, 1991

    MATH  Google Scholar 

  33. Shigekawa I. Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator. J Math Kyoto Univ, 1992, 32: 731–748

    MathSciNet  MATH  Google Scholar 

  34. Sobukawa T. Interpolation theory on Sobolev spaces over the abstract Wiener space. Tokyo J Math, 1989, 12: 117–130

    Article  MathSciNet  MATH  Google Scholar 

  35. Sudakov V N, Tsirel’son B S. Extremal properties of half-spaces for spherically invariant measures. J Soviet Math, 1978, 9: 9–18

    Article  MATH  Google Scholar 

  36. Treves F. Topological Vector Spaces, Distributions and Kernels. New York-London: Academic Press, 1967

    MATH  Google Scholar 

  37. Yu J Y, Zhang X. Infinite dimensional Cauchy-Kowalevski and Holmgren type theorems. Sci China Math, 2019, 62: 1645–1656

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu J Y, Zhang X. L2 estimates and existence theorems for the \(\bar \partial \) operators in infinite dimensions, I. J Math Pures Appl (9), 2022, 163: 518–548

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11931011 and 11901407), New Cornerstone Investigator Program and the Science Development Project of Sichuan University (Grant No 2020SCUNL201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiliang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Zhang, X. & Zhao, S. Sobolev embeddings in infinite dimensions. Sci. China Math. 66, 2157–2178 (2023). https://doi.org/10.1007/s11425-023-2174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-023-2174-9

Keywords

MSC(2020)

Navigation