Log in

Globally hyperbolic moment model of arbitrary order for the three-dimensional special relativistic Boltzmann equation with the Anderson-Witting collision

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper continues to derive the globally hyperbolic moment model of arbitrary order for the three-dimensional special relativistic Boltzmann equation with the Anderson-Witting collision. The method is the model reduction by the operator projection. Finding an orthogonal basis of the weighted polynomial space is crucial and built on infinite families of the complicate relativistic Grad type orthogonal polynomials depending on a parameter and the real spherical harmonics instead of the irreducible tensors. We study the properties of those functions carefully, including their recurrence relations, their derivatives with respect to the independent variable and parameter, and the zeros of the orthogonal polynomials. Our moment model is proved to be globally hyperbolic and linearly stable. Moreover, the Lorentz-covariance and the quasi-one-dimensional case, the non-relativistic and ultra-relativistic limits are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, 1974

    MATH  Google Scholar 

  2. Anderson J L. Relativistic Boltzmann theory and the Grad method of moments. In: Relativity. Boston: Springer, 1970, 109–124

    Chapter  Google Scholar 

  3. Anderson J L. Relativistic Grad polynomials. J Math Phys, 1974, 15: 1116–1119

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson J L, Witting H R. A relativistic relaxation-time model for the Boltzmann equation. Physica, 1974, 74: 466–488

    Article  Google Scholar 

  5. Bagland V, Degond P, Lemou M. Moment systems derived from relativistic kinetic equations. J Stat Phys, 2006, 125: 621–659

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai Z, Fan Y, Li R. Globally hyperbolic regularization of Grad’s moment system in one-dimensional space. Commun Math Sci, 2013, 11: 547–571

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai Z, Fan Y, Li R. Globally hyperbolic regularization of Grad’s moment system. Comm Pure Appl Math, 2014, 67: 464–518

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai Z, Fan Y, Li R. A framework on moment model reduction for kinetic equation. SIAM J Appl Math, 2014, 75: 2001–2023

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai Z, Li R. Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation. SIAM J Sci Comput, 2010, 32: 2875–2907

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai Z, Li R, Wang Y. Numerical regularized moment method for high Mach number flow. Commun Comput Phys, 2012, 11: 1415–1438

    Article  MathSciNet  MATH  Google Scholar 

  11. Cercignani C. The Boltzmann Equation and Its Applications. New York: Springer-Verlag, 1988

    Book  MATH  Google Scholar 

  12. Cercignani C, Kremer G M. The Relativistic Boltzmann Equation: Theory and Applications. Basel: Birkhäuser, 2002

    Book  MATH  Google Scholar 

  13. Chapman S, Cowling T G. The Mathematical Theory of Non-Uniform Gases, 3rd ed. Cambridge: Cambridge University Press, 1991

    MATH  Google Scholar 

  14. Denicol G S, Niemi H, Molnár E, et al. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys Rev D, 2012, 85: 114047

    Article  Google Scholar 

  15. Di Y, Fan Y, Li R, et al. Linear stability of hyperbolic moment models for Boltzmann equation. Numer Math Theory Methods Appl, 2017, 10: 255–277

    Article  MathSciNet  MATH  Google Scholar 

  16. Dreyer W. Maximisation of the entropy in non-equilibrium. J Phys A Math Gen, 1987, 20: 6505–6517

    Article  MATH  Google Scholar 

  17. Duan J M, Kuang Y Y, Tang H Z. Model reduction of a two-dimensional kinetic swarming model by operator projections. East Asian J Appl Math, 2018, 8: 151–180

    Article  MathSciNet  MATH  Google Scholar 

  18. Einstein A. Relativity: The Special and the General Theory. New York: Three Rivers Press, 1995

    MATH  Google Scholar 

  19. Fan Y, Koellermeier J, Li J, et al. Model reduction of kinetic equations by operator projection. J Stat Phys, 2016, 162: 457–486

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan Y W, Li R. Globally hyperbolic moment system by generalized Hermite expansion (in Chinese). Sci Sin Math, 2015, 45: 1635–1676

    Article  MATH  Google Scholar 

  21. Grad H. Note on N-dimensional Hermite polynomials. Comm Pure Appl Math, 1949, 2: 325–330

    Article  MathSciNet  MATH  Google Scholar 

  22. Grad H. On the kinetic theory of rarefied gases. Comm Pure Appl Math, 1949, 2: 331–407

    Article  MathSciNet  MATH  Google Scholar 

  23. Groot S R D, Leeuwen W A V, Weert C G V. Relativistic Kinetic Theory: Principles and Applications. Amsterdam: North-Holland, 1980

    Google Scholar 

  24. Hiscock W A, Lindblom L. Stability and causality in dissipative relativistic fluids. Ann Physics, 1983, 151: 466–496

    Article  MathSciNet  MATH  Google Scholar 

  25. Hiscock W A, Lindblom L. Linear plane waves in dissipative relativistic fluids. Phys Rev D, 1987, 35: 3723–3732

    Article  MathSciNet  Google Scholar 

  26. Hiscock W A, Lindblom L. Nonlinear pathologies in relativistic heat-conducting fluid theories. Phys Lett A, 1988, 131: 509–513

    Article  Google Scholar 

  27. Hiscock W A, Olson T S. Effects of frame choice on nonlinear dynamics in relativistic heat-conducting fluid theories. Phys Lett A, 1989, 141: 125–130

    Article  Google Scholar 

  28. Israel W, Stewart J M. Thermodynamics of nonstationary and transient effects in a relativistic gas. Phys Lett A, 1976, 58: 213–215

    Article  Google Scholar 

  29. Israel W, Stewart J M. Transient relativistic thermodynamics and kinetic theory. Ann Physics, 1979, 118: 341–372

    Article  MathSciNet  Google Scholar 

  30. Israel W, Stewart J M. On transient relativistic thermodynamics and kinetic theory II. Proc R Soc Lond Ser A Math Phys Eng Sci, 1979, 365: 43–52

    MathSciNet  Google Scholar 

  31. Jaiswal A. Relativistic third-order dissipative fluid dynamics from kinetic theory. Phys Rev C, 2013, 88: 021903

    Article  Google Scholar 

  32. Koellermeier J, Schaerer R, Torrilhon M. A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods. Kinet Relat Models, 2014, 7: 531–549

    Article  MathSciNet  MATH  Google Scholar 

  33. Kranyš M. Kinetic derivation of nonstationary general relativistic thermodynamics. Nuovo Cimento Soc Ital Fis B, 1972, 8: 417–441

    Article  Google Scholar 

  34. Kuang Y Y, Tang H Z. Globally hyperbolic moment model of arbitrary order for one-dimensional special relativistic Boltzmann equation. J Stat Phys, 2017, 167: 1303–1353

    Article  MathSciNet  MATH  Google Scholar 

  35. Landau L D, Lifshitz E M. Fluid Mechanics, 2nd ed. Oxford: Pergamon Press, 1987

    Google Scholar 

  36. Shen J, Tang T, Wang L. Spectral Methods: Algorithms, Analysis and Applications. Berlin: Springer-Verlag, 2011

    Book  MATH  Google Scholar 

  37. Stewart J M. On transient relativistic thermodynamics and kinetic theory. Proc R Soc Lond Ser A Math Phys Eng Sci, 1977, 357: 59–75

    MathSciNet  Google Scholar 

  38. Struchtrup H. Projected moments in relativistic kinetic theory. Phys A, 1998, 253: 555–593

    Article  MathSciNet  Google Scholar 

  39. Whittaker E T, Watson G N. A Course of Modern Analysis, 4th ed. Cambridge: Cambridge University Press, 1927

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Project on High-performance Computing under the National Key R&D Program (Grant No. 2016YFB0200603), the Science Challenge Project (Grant No. TZ2016002), the Sino-German Research Group Project (Grant No. GZ 1465) and National Natural Science Foundation of China (Grant Nos. 91630310 and 11421101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, Y., Tang, H. Globally hyperbolic moment model of arbitrary order for the three-dimensional special relativistic Boltzmann equation with the Anderson-Witting collision. Sci. China Math. 65, 1029–1064 (2022). https://doi.org/10.1007/s11425-019-1771-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1771-7

Keywords

MSC(2010)

Navigation