Log in

Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniqueness and nonnegativeness of solutions when the principal operator is monotone and the nonlinearity is nonincreasing. Our operator is of the most general form containing all previous ones and we also weaken assumptions on the operator and the nonlinearity to get the above results. Moreover, we do not impose the restricted condition on p(x) and the uniform monotonicity of the operator to show the existence of three distinct solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349–381

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonanno G, Molica Bisci G. Three weak solutions for elliptic Dirichlet problems. J Math Anal Appl, 2011, 382: 1–8

    Article  MathSciNet  MATH  Google Scholar 

  3. Boureanu M M, Udrea D N. Existence and multiplicity results for elliptic problems with p(.)-Growth conditions. Nonlinear Anal Real World Appl, 2013, 14: 1829–1844

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66: 1383–1406

    Article  MathSciNet  MATH  Google Scholar 

  5. Diening L, Harjulehto P, Hästö P, et al. Lebesgue and Sobolev Spaces with Variable Exponents. Heidelberg: Springer-Verlag, 2011

    Book  MATH  Google Scholar 

  6. Fan X. Global C1,a regularity for variable exponent elliptic equations in divergence form. J Differential Equations, 2007, 235: 397–417

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan X. Existence and uniqueness for the p(x)-Laplacian-Dirichlet problems. Math Nachr, 2011, 284: 1435–1445

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan X, Han X. Existence and multiplicity of solutions for p(x)-Laplacian equations in RN. Nonlinear Anal, 2004, 59: 173–188

    MathSciNet  MATH  Google Scholar 

  9. Ho K, Sim I. Existence and some properties of solutions for degenerate elliptic equations with exponent variable. Nonlinear Anal, 2014, 98: 146–164.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ho K, Sim I. Existence and multiplicity of solutions for degenerate p(x)-Laplace equations involving concave-convex type nonlinearities with two parameters. Taiwanese J Math, 2015, 19: 1469–1493

    MathSciNet  Google Scholar 

  11. Kim I H, Kim Y H. Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents. Manuscripta Math, 2015, 147: 169–191

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim Y H, Wang L, Zhang C. Global bifurcation of a class of degenerate elliptic equations with variable exponents. J Math Anal Appl, 2010, 371: 624–637

    Article  MathSciNet  MATH  Google Scholar 

  13. Kovăčik O, Răkosnik J. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41: 592–618

    MathSciNet  MATH  Google Scholar 

  14. Le V K. On a sub-supersolutionmethod for variational inequalities with Leray-Lions operators in variable exponent spaces. Nonlinear Anal, 2009, 71: 3305–3321

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu D, Wang X, Yao J. On (p 1(x), p 2(x))-Laplace equations. Ar**v:1205.1854v1, 2012

    Google Scholar 

  16. Mihăilescu M, Rădulescu V. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc R Soc Lond Ser A, 2006, 462: 2625–2641

    Article  MathSciNet  MATH  Google Scholar 

  17. Ružička M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag, 2000

    MATH  Google Scholar 

  18. Sim I, Kim Y H. Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents. In: Dynamical Systems, Differential Equations and Applications, 9th AIMS Conference. Supplement. Orlando: AIMS, 2013, 695–707

    Google Scholar 

  19. Tan Z, Fang F. On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition. Nonlinear Anal, 2012, 75: 3902–3915

    Article  MathSciNet  MATH  Google Scholar 

  20. Willem M. Minimax Theorems. Boston: Birkhäuser, 1996

    Book  MATH  Google Scholar 

  21. Zeidler E. Nonlinear Functional Analysis and Its Applications II/B. New York: Springer, 1990

    Book  MATH  Google Scholar 

  22. Zhao J F. Structure Theory of Banach Spaces (in Chinese). Wuhan: Wuhan University Press, 1991

    Google Scholar 

  23. Zhikov V V. On some variational problems. Russ J Math Phys, 1997, 5: 105–116

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant Funded by the Korea Government (Grant No. NRF-2015R1D1A3A01019789).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inbo Sim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, K., Sim, I. Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators. Sci. China Math. 60, 133–146 (2017). https://doi.org/10.1007/s11425-015-0385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-0385-0

Keywords

MSC(2010)

Navigation