Log in

Germacrone, isolated from Curcuma wenyu**, inhibits melanin synthesis through the regulation of the MAPK signaling pathway

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Abnormal melanin synthesis causes hyperpigmentation disorders, such as chloasma, freckles, and melanoma, which are highly multiple and prevalent. There were few reports on the anti-melanogenic effect of Curcuma wenyu** Y.H. Chen et C. Ling, and the bioactive compound has not been elucidated as well. The study aims to investigate the anti-melanogenic effect of C. wenyu**, and identify the bioactive compound, and further explore its underlying mechanism. Our results showed that the Petroleum ether fraction extracted from C. wenyu** rhizome had a significant anti-melanogenic effect, and germacrone isolated from it was confirmed as the major bioactive compound. To our data, germacrone significantly inhibited tyrosinase (TYR) activity, reduced melanosome synthesis, reduced dendrites formation of B16F10 cells, and melanosome transport to keratinocytes. Moreover, germacrone effectively decreased the hyperpigmentation in zebrafish and the skin of guinea pigs in vivo. Western-blot analysis showed that germacrone down-regulated the expression of TYR, TRP-1, TRP-2, Rab27a, Cdc42, and MITF proteins via the activation of the MAPK signaling pathway. Taken together, germacrone is an effective bioactive compound for melanogenesis inhibition. Our studies suggest that germacrone may be considered a potential candidate for skin whitening.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TYR:

Tyrosinase

TRP-1:

Tyrosinase-relative protein 1

TRP-2:

Tyrosinase-relative protein 2

MITF:

Microphthalmia-associated transcription factor

L-DOPA:

3,4-Dihydroxyphenylalanine

IBMX:

3-Isobutyl-1-methylxanthine

PTU:

N-phenylthiourea

MAPKs:

Mitogen-activated protein kinase

TEM:

Transmission electron microscope

HPLC:

High-performance liquid chromatography

Cdc42:

Cell division cycle protein 42

PMEL-17:

Pre-melanosome protein 17

Rab27a:

Ras-related protein Rab27a

References

  1. Pavan WJ, Sturm RA (2019) The genetics of human skin and hair pigmentation. Annu Rev Genomics Hum Genet 20:41–72. https://doi.org/10.1146/annurev-genom-083118-015230

    Article  CAS  PubMed  Google Scholar 

  2. An XH, Lv JP, Wang FF (2022) Pterostilbene inhibits melanogenesis, melanocyte dendricity and melanosome transport through cAMP/PKA/CREB pathway. Eur J Pharmacol 932:175231. https://doi.org/10.1016/j.ejphar.2022.175231

    Article  CAS  PubMed  Google Scholar 

  3. Tang H, Yang L, Wu L et al (2021) Kaempferol, the melanogenic component of sanguisorba officinalis, enhances dendricity and melanosome maturation/transport in melanocytes. J Pharmacol Sci 147(4):348–357. https://doi.org/10.1016/j.jphs.2021.08.009

    Article  CAS  PubMed  Google Scholar 

  4. Jeong HS, Gu GE, Jo AR et al (2015) Baicalin-induced Akt activation decreases melanogenesis through downregulation of microphthalmia-associated transcription factor and tyrosinase. Eur J Pharmacol 761:19–27. https://doi.org/10.1016/j.ejphar.2015.04.028

    Article  CAS  PubMed  Google Scholar 

  5. Liu F, Qu LK, Li H et al (2022) Advances in biomedical fFunctions of natural whitening substances in the treatment of skin pigmentation diseases. Pharmaceutics 14(11):2308. https://doi.org/10.3390/pharmaceutics14112308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D’Mello S, Finlay GJ, Baguley BC, Askarian-Amiri ME (2016) Signaling pathways in melanogenesis. Int J Mol Sci 17(7):1144. https://doi.org/10.3390/ijms17071144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hong C, Yang LL, Zhang YF, Li YM, Wu HL (2022) Epimedium brevicornum Maxim. extract exhibits pigmentation by melanin biosynthesis and melanosome biogenesis transfer. Front Pharmacol 13:963160. https://doi.org/10.3389/fphar.2022.963160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tu CX, Lin M, Lu SS, Qi XY, Zhang RX, Zhang YY (2012) Curcumin inhibits melanogenesis in human melanocytes. Phytother Res 26(2):174–179. https://doi.org/10.1002/ptr.3517

    Article  CAS  PubMed  Google Scholar 

  9. Lv JP, Yang Y, Jia BY, Li SQ, Zhang XM, Gao RY (2021) The inhibitory effect of curcumin derivative J147 on melanogenesis and melanosome transport by facilitating ERK-mediated MITF degradation. Front Pharmacol 12:783730. https://doi.org/10.3389/fphar.2021.783730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou SH, Zeng HL, Huang JH et al (2021) Epigenetic regulation of melanogenesis. Ageing Res Rev 69:101349. https://doi.org/10.1016/j.arr.2021.101349

    Article  CAS  PubMed  Google Scholar 

  11. Liu JZ, Jiang R, Zhou JY et al (2021) Salicylic acid in ginseng root alleviates skin hyperpigmentation disorders by inhibiting melanogenesis and melanosome transport. Eur J Pharmacol 910:174498. https://doi.org/10.1016/j.ejphar.2021.174458

    Article  CAS  Google Scholar 

  12. Ishida M, Arai SP, Ohbayashi N, Fukuda M (2014) The GTPase-deficient Rab 27A(Q78L) mutant inhibits melanosome transport in melanocytes through trap** of Rab27A effector protein Slac2-a/melanophilin in their cytosol. J Biol Chem 289(16):11059–11067. https://doi.org/10.1074/jbc.M114.552281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang YP, Li Z, Wu W et al (2022) TRPA1 promotes melanosome phagocytosis in keratinocytes via PAR-2/ CYLD axis. J Dermatol Sci 106(3):181–188. https://doi.org/10.1016/j.jdermsci.2022.05.005

    Article  CAS  PubMed  Google Scholar 

  14. Li YH, Wu YC, Li YM, Guo FJ (2021) Review of the traditional uses, phytochemistry, and pharmacology of Curcuma wenyu** YH Chen et C Ling. J Ethnopharmacol 269:113689. https://doi.org/10.1016/j.jep.2020.113689

    Article  CAS  PubMed  Google Scholar 

  15. Li YH, Wang H, Wang H, Wu YC, Li YM, Guo FJ (2022) Nine new sesquiterpenes from Curcuma wenyu** rhizomes. Fitoterapia 158:105167. https://doi.org/10.1016/j.fitote.2022.105167

    Article  CAS  PubMed  Google Scholar 

  16. Chen LJ, Liu JW, Wang H, Li YH, Li YM, Guo FJ (2022) Four new sesquiterpenes from Curcuma wenyu**. Fitoterapia 163:105344. https://doi.org/10.1016/j.fitote.2022.105344

    Article  CAS  PubMed  Google Scholar 

  17. Liu R, Pei Q, Shou T, Zhang WJ, Hu JLW (2019) Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyu** extract against human renal cell carcinoma A498 cells. Int J Nanomedicine 14:4091–4103. https://doi.org/10.2147/IJN.S203222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao SY, **a GY, Wang LQ et al (2017) Sesquiterpenes from Curcuma wenyu** with their inhibitory activities on nitric oxide production in RAW 264. 7 cells. Nat Prod Res 31(5):548–554. https://doi.org/10.1080/14786419.2016.1205053

    Article  CAS  PubMed  Google Scholar 

  19. **a Q, Wang X, Xu DJ, Chen XH, Chen FH (2012) Inhibition of platelet aggregation by curdione from Curcuma wenyu** essential Oil. Thromb Res 130(3):409–414. https://doi.org/10.1016/j.thromres.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  20. **e H, Su D, Zhang J et al (2020) Raw and vinegar processed Curcuma wenyu** regulates hepatic fibrosis via bloking TGF-β/Smad signaling pathways and up-regulation of MMP-2/TIMP-1 ratio. J Ethnopharmacol 246:111768. https://doi.org/10.1016/j.jep.2019.01.045

    Article  CAS  PubMed  Google Scholar 

  21. Kwon PK, Kim SW, De R, Jeong SW, Kim KT (2021) Isoprocurcumenol supports keratinocyte growth and survival through epidermal growth factor receptor activation. Int J Mol Sci 22(22):12579. https://doi.org/10.3390/ijms222212579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang H, Li XY, Li YH, Wu HL, Li YM, Guo FJ (2022) Four new sesquiterpenes from the rhizomes of Curcuma wenyu**. Phytochem Lett 52:143–148. https://doi.org/10.1016/j.phytol.2022.11.002

    Article  CAS  Google Scholar 

  23. Rothberg BEG, Moeder CB, Kluger H et al (2008) Nuclear to non-nuclear Pmel17/gp100 expression (HMB45 staining) as a discriminator between benign and malignant melanocytic lesions. Mod Pathol 21(9):1121–1129. https://doi.org/10.1038/modpathol.2008.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu L, Zhong M, Dong J, Chen MJ, Shang J, Yue YY (2020) 5-Hydroxytryptamine (5-HT) positively regulates pigmentation via inducing melanoblast specification and melanin synthesis in Zebrafish Embryos. Biomolecules 10(9):1344. https://doi.org/10.3390/biom10091344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi HY, Yoon JH, Youn KJ, Jun M (2022) Decursin prevents melanogenesis by suppressing MITF expression through the regulation of PKA/CREB, MAPKs, and PI3K/Akt/GSK-3β cascades. Biomed Pharmacother 147:112651. https://doi.org/10.1016/j.biopha.2022.112651

    Article  CAS  PubMed  Google Scholar 

  26. Wang HM, Qu LQ, Ng PLJ et al (2022) Natural citrus flavanone 5-demethylnobiletin stimulates melanogenesis through the activation of cAMP/CREB pathway in B16F10 cells. Phytomedicine 98:153941. https://doi.org/10.1016/j.phymed.2022.153941

    Article  CAS  PubMed  Google Scholar 

  27. Feng D, Fang ZX, Zhang PZ (2022) The melanin inhibitory effect of plants and phytochemicals: a systematic review. Phytomedicine 107:154449. https://doi.org/10.1016/j.phymed.2022.154449

    Article  CAS  PubMed  Google Scholar 

  28. Wang ZR, Zhuo F, Chu PG, Yang XL, Zhao G (2019) Germacrone alleviates collagen-induced arthritis via regulating Th1/ Th2 balance and NF-kB activation. Biochem Biophys Res Commun 518(3):560–564. https://doi.org/10.1016/j.bbrc.2019.08.084

    Article  CAS  PubMed  Google Scholar 

  29. Liao QJ, Qian ZX, Liu R, An LW, Chen XL (2013) Germacrone inhibits early stages of influenza virus infection. Antiviral Res 100(3):578–588. https://doi.org/10.1016/j.antiviral.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Y, Cai J, Shi KH et al (2021) Germacrone induces lung cancer cell apoptosis and cell cycle arrest via the Akt/MDM2/p53 signaling pathway. Mol Med Rep 23(6):452. https://doi.org/10.3892/mmr.2021.12091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji D, Zhao Q, Qin YW et al (2021) Germacrone improves liver fibrosis by regulating the PI3K/AKT/mTOR signalling pathway. Cell Biol Int 45(9):1866–1875. https://doi.org/10.1002/cbin.11607

    Article  CAS  PubMed  Google Scholar 

  32. Zhuang SJ, Liu BG, Guo SF et al (2021) Germacrone alleviates neurological deficits following traumatic brain injury by modulating neuroinflammation and oxidative stress. BMC Complement Med Ther 21(1):6. https://doi.org/10.1186/s12906-020-03175-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hashim FJ, Vichitphan S, Han JH, Vichitphan K (2021) Alternative approach for specific tyrosinase inhibitor screening: uncompetitive inhibition of tyrosinase by Moringa oleifera. Molecules 26(15):4576. https://doi.org/10.3390/molecules26154576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li J, Feng L, Liu L et al (2021) Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 224:113744. https://doi.org/10.1016/j.ejmech.2021.113744

    Article  CAS  PubMed  Google Scholar 

  35. Hu SH, Huang JH, Pei SY et al (2019) Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways. J Cell Physiol 234(5):7330–7340. https://doi.org/10.1002/jcp.27492

    Article  CAS  PubMed  Google Scholar 

  36. Pillaiyara T, Manickamb M, Jung SH (2017) Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal 40:99–115. https://doi.org/10.1016/j.cellsig.2017.09.004

    Article  CAS  Google Scholar 

  37. Karunarathne WAHM, Molagoda IMN, Kim MS et al (2019) Flumequine-mediated upregulation of p38 MAPK and JNK results in melanogenesis in B16F10 cells and Zebrafish Larvae. Biomolecules 9(10):596. https://doi.org/10.3390/biom9100596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jung ES, Kim JH, Kim MO et al (2016) Afzelin positively regulates melanogenesis through the p38 MAPK pathway. Chem Biol Interact 254:167–172. https://doi.org/10.1016/j.cbi.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  39. Yamaguchi YJ, Hearing VJ (2009) Physiological factors that regulate skin pigmentation. BioFactors 35(2):193–199. https://doi.org/10.1002/biof.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lv JP, An XH, Jiang SZ, Yang Y, Song GQ, Gao RY (2020) Protoporphyrin IX stimulates melanogenesis, melanocyte dendricity, and melanosome transport through the cGMP/PKG pathway. Front Pharmacol 11:569368. https://doi.org/10.3389/fphar.2020.569368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boissy RE (2003) Melanosome transfer to and translocation in the keratinocyte. Exp Dermatol 12(Suppl 2):5–12. https://doi.org/10.1034/j.1600-0625.12.s2.1.x

    Article  PubMed  Google Scholar 

  42. Bento-Lopes L, Cabaço LC, Charneca J et al (2023) Melanin’s journey from melanocytes to keratinocytes: uncovering the molecular mechanisms of melanin transfer and processing. Int J Mol Sci 24(14):11289. https://doi.org/10.3390/ijms241411289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi EJ, Kang TG, Kim J, Hwang JK (2011) Macelignan inhibits melanosome transfer mediated by protease-activated receptor-2 in keratinocytes. Biol Pharm Bull 34(5):748–754. https://doi.org/10.1248/bpb.34.748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

An appreciated thank to Dr. Yingchun Wu for identifying the plant.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

**aoye Li: Conceptualization, Investigation, Data curation, Writing—original draft. Lijia Chen: Methodology. Hong Wang: Methodology. Yiming Li: Supervision. Huali Wu: Supervision, Review. Fujiang Guo: Supervision, Writing—review & editing.

Corresponding authors

Correspondence to Huali Wu or Fujiang Guo.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2798 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, L., Wang, H. et al. Germacrone, isolated from Curcuma wenyu**, inhibits melanin synthesis through the regulation of the MAPK signaling pathway. J Nat Med (2024). https://doi.org/10.1007/s11418-024-01818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-024-01818-x

Keywords

Navigation