Log in

Environmental differences between Japan and Indonesia provide endophyte diversity associated with Artemisia plant and variety of artemisinin derivatives in microbial conversion

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

We compared the endophytic compositions of Artemisia plant from different environments (Japan and Indonesia) to demonstrate that the endophytic filamentous fungi in both species differed based on their environments. To prove that the species were identical, both Artemisia plants were identified by comparing the scanning electron micrographs of their pollens, as well as the nucleotide sequences (ribosomal internal transcribed spacer and mitochondrial maturase K) of the two gene regions. After isolating the endophytic filamentous fungi from each plant, we observed that those from Japan and Indonesia comprised 14 and 6 genera, respectively. We assumed that the genera, Arthrinium and Colletotrichum, which exist in both Artemisia species, were species-specific filamentous fungi, while the other genera were environment-dependent. In the microbial-conversion reaction with artemisinin as a substrate using Colletotrichum sp., the peroxy bridge of artemisinin, which is an active site for achieving antimalarial effect, was converted into an ether bond. However, the reaction using the environment-dependent endophyte did not eliminate the peroxy bridge. These endophytic reactions indicated the different roles of endophytes within Artemisia plants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280. https://doi.org/10.1016/J.TPLANTS.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  2. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965. https://doi.org/10.1007/S00253-015-6487-3/FIGURES/3

    Article  CAS  PubMed  Google Scholar 

  3. Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90. https://doi.org/10.2134/agronj1989.00021962008100010015x

    Article  Google Scholar 

  4. Siegel MR, Latch GCM, Johnson MC (1987) Fungal endophytes of grasses. Annu Rev Phytopathol 25:293–315. https://doi.org/10.1146/annurev.py.25.090187.001453

    Article  Google Scholar 

  5. Kanda K, Hirai Y, Koga H, Hasegawa K (1994) Endophyte-enhanced resistance in perennial ryegrass and tall fescue to bluegrass webworm, Parapediasia teterrella. Jpn J Appl Entomol Zool 38:141–145. https://doi.org/10.1303/jjaez.38.141

    Article  Google Scholar 

  6. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216. https://doi.org/10.1126/science.8097061

    Article  CAS  PubMed  Google Scholar 

  7. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124. https://doi.org/10.1021/np060174f

    Article  CAS  PubMed  Google Scholar 

  8. Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7. https://doi.org/10.1021/np800455b

    Article  CAS  PubMed  Google Scholar 

  9. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hyperucyn perforatum that produces Hypericin. J Nat Prod 71:159–162

    Article  CAS  PubMed  Google Scholar 

  10. Maehara S, Simanjuntak P, Kitamura C et al (2011) Cinchona alkaloids are also produced by an endophytic filamentous fungus living in Cinchona plant. Chem Pharm Bull (Tokyo) 59:1073–1074. https://doi.org/10.1248/cpb.59.1073

    Article  CAS  PubMed  Google Scholar 

  11. Agusta A, Maehara S, Ohashi K et al (2005) Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull (Tokyo) 53:1565–1569. https://doi.org/10.1248/cpb.53.1565

    Article  CAS  PubMed  Google Scholar 

  12. Maehara S, Ikeda M, Haraguchi H et al (2011) Microbial conversion of curcumin into colorless hydroderivatives by the endophytic fungus Diaporthe sp. associated with Curcuma longa. Chem Pharm Bull 59:1042–1044. https://doi.org/10.1248/cpb.59.1042

    Article  CAS  Google Scholar 

  13. Özçinar Ö, Tağ Ö, Yusufoglu H et al (2018) Biotransformation of ruscogenins by Cunninghamella blakesleeana NRRL 1369 and neoruscogenin by endophytic fungus Neosartorya hiratsukae. Phytochemistry 152:1–9. https://doi.org/10.1016/j.phytochem.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  14. Nigam M, Atanassova M, Mishra AP et al (2019) Bioactive compounds and health benefits of Artemisia species. Nat Prod Commun 14:1–17

    Google Scholar 

  15. Ekiert H, Pajor J, Klin P et al (2020) Significance of Artemisia vulgaris L. (Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies. Molecules 25:4415. https://doi.org/10.3390/MOLECULES25194415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meshnick SR, Yang YZ, Lima V et al (1993) Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother 37:1108–1114. https://doi.org/10.1128/AAC.37.5.1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meshnick SR, Taylor TE, Kamchonwongpaisan AS (1996) Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev 60:301–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cosoveanu A, Cabrera R (2018) Endophytic fungi in species of Artemisia. J Fungi 4:53. https://doi.org/10.3390/JOF4020053

    Article  Google Scholar 

  19. Erjaee Z, Shekarforoush SS, Hosseinzadeh S (2019) Identification of endophytic bacteria in medicinal plants and their antifungal activities against food spoilage fungi. J Food Sci Technol 56:5262–5270. https://doi.org/10.1007/S13197-019-03995-0/METRICS

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hussain A, Potter D, Qasim Hayat M et al (2019) Pollen morphology and its systematic implication on some species of Artemisia L. from Gilgit-Baltistan Pakistan. Bangladesh J Plant Taxon 26:157–168. https://doi.org/10.3329/BJPT.V26I2.44576

    Article  Google Scholar 

  21. Lee IS, ElSohly HN, Croom EM, Hufford CD (1989) Microbial metabolism studies of the antimalarial sesquiterpene artemisinin. J Nat Prod 52:337–341. https://doi.org/10.1021/NP50062A020/ASSET/NP50062A020.FP.PNG_V03

    Article  CAS  PubMed  Google Scholar 

  22. Goswami A, Saikia PP, Barua NC et al (2010) Bio-transformation of artemisinin using soil microbe: Direct C-acetoxylation of artemisinin at C-9 by Penicillium simplissimum. Bioorg Med Chem Lett 20:359–361. https://doi.org/10.1016/J.BMCL.2009.10.097

    Article  CAS  PubMed  Google Scholar 

  23. Fasan R (University of R (2015) Artemisinin derivatives, methods for their preparation and their use as antimalarial agents. US 2015/0299217 A1

  24. Duy H (Kansas state U foundation) H (2017) Synthesis and application of chiral substituted polyvinylpyrrolidinones. WO2017/172763 A1

  25. Shimono Y, Hayakawa H, Kurokawa S et al (2013) Phylogeography of mugwort (Artemisia indica), a native pioneer herb in Japan. J Hered 104:830–841. https://doi.org/10.1093/JHERED/EST054

    Article  CAS  PubMed  Google Scholar 

  26. Zimmerman NB, Vitousek PM (2012) Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci USA 109:13022–13027. https://doi.org/10.1073/PNAS.1209872109/-/DCSUPPLEMENTAL/PNAS.201209872SI.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. White TJ, Bruns T, Lee SB, Taylor JW (1990) PCR protocols. A guide methods and applications. Academic Press, San Diego, California

    Google Scholar 

  28. Pracht P, Bauer CA, Grimme S (2017) Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites. J Comput Chem 38:2618–2631. https://doi.org/10.1002/JCC.24922

    Article  CAS  PubMed  Google Scholar 

  29. Bannwarth C, Caldeweyher E, Ehlert S et al (2021) Extended tight-binding quantum chemistry methods. Wiley Interdiscip Rev Comput Mol Sci 11:e1493. https://doi.org/10.1002/WCMS.1493

    Article  CAS  Google Scholar 

  30. Kuncoro H, Widyawaruyanti A, Ersam T (2018) Alpha-mangostin effect on inhibition development stadium and globin accumulation against Plasmodium falciparum. Pharmacogn J 10:783–788. https://doi.org/10.5530/pj.2018.4.132

    Article  CAS  Google Scholar 

Download references

Funding

Japan Science and Technology Agency Strategic International Collaborative Research Program, JPMJSC15H1, Shoji Maehara, Japan Science and Technology Agency Strategic International Collaborative Research Program, JPMJSC15H1, Andria Agusta.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed in Japan by SM, MT, MS, HY, and MK. Material preparation, data collection, and analysis were performed in Indonesia by AA, AF, EE, MI, and MA. Computational analyses were performed by TH. The first draft of the manuscript was written by SM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shoji Maehara.

Ethics declarations

Conflict of interest

This work was supported by Japan Science and Technology Agency Strategic International Collaborative Research Program (SICORP, Grant Number JPMJSC15H1, Japan), Fukuyama University (Hiroshima, Japan) and Research Center for Biosystematics and Evolution, National Research and Innovation Agency (Bogor, Indonesia).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maehara, S., Fathoni, A., Tagawa, M. et al. Environmental differences between Japan and Indonesia provide endophyte diversity associated with Artemisia plant and variety of artemisinin derivatives in microbial conversion. J Nat Med 77, 916–927 (2023). https://doi.org/10.1007/s11418-023-01709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01709-7

Keywords

Navigation