Log in

Evaluation of Technosols constructed with construction and excavation debris for greenhouse production of ornamental plants

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The overexploitation of the O horizon, or the litter layer of the soil profile, in the production of ornamental plants, causes the disintegration of the landscape and the loss of soil productivity in preserved areas, which calls for new approaches to address the need for substrates in soilless culture systems. Thus, this study examined the construction of purpose-designed Technosols from construction waste as substrates in the production of ornamental plants.

Methods

The evaluated treatments were as follows: (CCW) 40% concrete waste, 30% compost, 30% wood chips; (ECW) 40% excavation waste, 30% compost, 30% wood chips; and (AOW) 40% compost, 60% wood chips. A control treatment (CTL) was composed of 50% compost and 50% natural exported soil. The plant species used were Heliotropium arborescens, Lobularia maritima, and Lavandula angustifolia, which were grown for one cycle in an 8-week greenhouse experiment. The pH, electrical conductivity (EC), carbon and nutrient (N, P, and exchangeable cations) contents, and water availability of the Technosols and control treatment, as well as the survival rate, presence of flowers, number of flowers per plant and shoot diameter of the ornamental plants, were evaluated over the experimental period.

Results

All treatments had slightly alkaline pH, yet their EC decreased to the levels recommended for growing media considering the evaluated species. The AOW presented the highest initial contents of total C, total N, and available P, and the highest concentration of DOC at the end of the experiment, followed by the CCW Technosol. There were no differences within treatments regarding their initial and final available P contents, and the final available P and mineral N contents in Technosols and control did not differ, thus showing their ability to supply both N and P adequately to plants. A high plant survival rate was observed throughout the experimental period, and the frequency of blooming plants increased for all species regardless of the treatment.

Conclusions

The Technosols produced from construction and excavation waste had been shown to provide favorable chemical, physical, and physicochemical conditions for the vegetative development and blooming of ornamental plants with different fertilization requirements and, thus, could be used as alternative to reduce the exploitation of exported natural soils. The plants used in the study had different nutritional requirements, yet they all grew adequately. The Technosol made from concrete waste had the most promising outcome in terms of C and available nutrients (N, P and exchangeable cations) as well as water retention and availability to plants compared to the excavation-based Technosol, besides having comparable results with the control treatment that is commonly used by the producers to grow ornamental and flower plants. Considering that no mineral fertilization was used in this study, further research may assess the use of a controlled fertilization schedule in order to reduce and optimize the use of agrochemical inputs, from small to large-scale growers of flower plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

The authors thank the company Concretos Reciclados S.A. de C.V., for providing the construction wastes materials used in the investigation. The authors would like to thank Porfirio Martinez Solares, Stephen Caleb Orozco, Luisa Tinoco, Karely Villasana, Sarai Escobar, and Rubén Cabello and the Laboratorio Nacional de Geoquímica y Mineralogía (LANGEM) and the Laboratorio Universitario de Nanotecnología Ambiental (LUNA) UNAM for their technical support.

Funding

This research was funded by the National Autonomous University of Mexico (UNAM) though Project PAPIIT IN108118 and had the collaboration of the Xochimilco Town Hall through the agreement UNAM 57213–393-17–111-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Prado.

Additional information

Responsible editor: Zhihong Xu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbruzzini, T.F., Mora, L. & Prado, B. Evaluation of Technosols constructed with construction and excavation debris for greenhouse production of ornamental plants. J Soils Sediments 22, 745–756 (2022). https://doi.org/10.1007/s11368-021-03112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-021-03112-9

Keywords

Navigation