Log in

Petroplinthite formation in a pedosedimentary sequence along a northern Mediterranean coast: from micromorphology to landscape evolution

  • SOIL FORMATION AND WEATHERING IN TIME AND SPACE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The petroplinthic horizon is a layer of indurated material in which Fe is an important cement, and it pertains to the pedogenetic material called “laterite”. The aim of this paper is to document the evolution of a coastal pedosedimentary sequence that developed in NW Italy during the Quaternary and discuss the genesis of its petroplinthic horizon within the context of environmental changes that should not have been favourable to lateritisation processes.

Materials and methods

The palaeosol profile was described, and the soil horizons were grouped into pedostratigraphic levels. The horizons were characterised using laboratory routine analysis, X-ray diffraction and thin section micromorphology. In addition, a scanning electron microscope examination of the back-scattered images and an elemental analysis were performed on the petroplinthic horizon only.

Results and discussion

The micromorphological evidence and mineralogical analyses suggest a polygenetic origin for the profile that reflects the influence of separate processes acting on distinct parent material under different environmental conditions.

Conclusions

The petroplinthic horizon results from a pedogenetic process that occurs during seasonal fluctuations of the water table, whereas the plinthite has no pedogenetic link with the weathered bedrock. The plinthitisation/ferrugunisation derived from iron enrichment and accumulation from an external upslope source and/or by post-depositional precipitation of “secondary” iron phyllosilicates (e.g. hisingerite) is a result of the dissolution of pre-existing hematite in inherited detrital laterite fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Achyuthan H, Fedoroff N (2008) Ferricrete in Tamil Nadu, Chennai, South-Eastern India: From Landsape to Micromorphology, Genesi, and Paleoenvironmental Significance. In: Kapur S, Mermut A, Stoops G (eds) New Trends in Soil Micromorphology. Springer-Verlag, Berlin, pp 111–135

    Chapter  Google Scholar 

  • Bartolini C, Bidini D, Ferrari GA, Magaldi D (1984) Pedostratigrafia e Morfostratigrafia nello Studio delle Superfici Sommitali Situate fra Serchio e Ombrone Pistoiese. Geogr Fis Din Quat 7:3–9

    Google Scholar 

  • Benyarku CA, Stoops G (2005) Guidelines for preparation of rock and soil thin section and polished sections. Quaderns DMACS 33, Paperkite Editorial, Departament de Medi Ambient I Ciències del Sòl, Universitat de Lleida

  • Biancotti A, Motta M (1998) Morfotettonica dell’Altopiano delle Manie e Zone Circostanti (Liguria Occidentale). Suppl Geogr Fis Din Quat I:45–68

    Google Scholar 

  • Bigham JM, Heckendorn SE, Jaynes WF, Smeck NE (1991) Stability of iron oxides in two soils with contrasting colors. Soil Sci Soc Am J 55:1485–1492

    Article  CAS  Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Article  Google Scholar 

  • Botha GA, Fedoroff N (1995) Palaesols in Late Quaternary colluvium, northern KwaZulu-Natal, South Africa. J Afr Earth Sci 21(2):291–311

    Article  Google Scholar 

  • Brewer R (1976) Fabric and Mineral Analysis of Soils. Robert E.Krieger Publishing Company, Huntington

    Google Scholar 

  • Bronger A, Sedov SN (2003) Vetusols and paleosols: natural versus man-induced environmental change in the Atlantic coastal region of Morocco. Quat Int 106–107:33–60

    Article  Google Scholar 

  • Busacca AJ, Singer MJ (1989) Pedogenesis of a chronosequence in the Sacramento Valley, California, USA. II. Elemental chemistry of silt fractions. Geoderma 44:43–75

    Article  CAS  Google Scholar 

  • Carobene L, Firpo M (1994) Una paleospiaggia tra Voltri e Palmaro (Genova): evidenze sedimentologiche e morfologiche. Quaternario 7(1):123–138

    Google Scholar 

  • Carobene L, Firpo M (2002) Forme terrazzate relitte di genesi marina lungo la costa ligure tra Genova e Savona (Liguria occidentale). Quaternario 15(1):53–68

    Google Scholar 

  • Catt JA (1991) Soils as indicators of Quaternary climatic change in mid-latitude regions. Geoderma 51:167–187

    Article  Google Scholar 

  • Chiesa S, Cortesogno L, Forcella F, Galli M, Messiga B, Pasquare G, Pedemonte GM, Piccardo GB, Rossi PM (1975) Assetto strutturale ed interpretazione geodinamica del Gruppo di Voltri. Boll Soc Geol Ital 94:555–581

    Google Scholar 

  • Costantini EAC (2007) Linee guida dei metodi di rilevamento e informatizzazione dei dati pedologici. CRA-ABP, Firenze

    Google Scholar 

  • Costantini EAC, Priori S (2007) Pedogenesis of plinthite during early Pliocene in the Mediterranean environment. Case study of a buried paleosol at Podere Renieri, central Italy. Catena 71:425–443

    Article  CAS  Google Scholar 

  • Costantini EAC, Lessovaia S, Vodyanitskii Y (2006) Using the analysis of iron and iron oxides in paleosols (TEM, geochemistry and iron forms) for the assessment of present and past pedogenesis. Quat Inter 156–157:200–211

    Article  Google Scholar 

  • Costantini EAC, L'Abate G, Barbetti R, Fantappié M, Lorenzetti R, Magini S (2012) Soil map of Italy. DOI:ISBN: 978-88-97002-02-4

  • Cremaschi M, Ginesu S (1990) Morfogenesi e Pedogenesi Tardo Terziaria e Pleistocenica Antica nella Nurra Occidentale (Sardegna). Nota Preliminare, Geogr Fis Din Quat 13:81–82

    Google Scholar 

  • Daniels RB, Perkins HF, Hajek BF, Gamble EE (1978) Morphology of discontinuous phase plinthite and criteria for its field identification in the southeastern United States. Soil Sci Soc Am J 42:944–949

    Article  CAS  Google Scholar 

  • Delvigne JE (1998) Atlas of Micromorphology of Mineral Alteration and Weathering. The Canadian Mineralogist, Special Publication 3

  • Dos Anjos LHC, Franzmeier DP, Schulze DG (1995) Formation of soils with plinthite on a toposequence in Maranh o State, Brazil. Geoderma 64:257–279

    Article  Google Scholar 

  • Douka K, Grimaldi S, Boschian G, del Lucchese A, Higham TFG (2012) A new chronostratigraphic framework for the Upper Palaeolithic of Riparo Mochi (Italy). J Hum Evol 62:286–299

    Article  Google Scholar 

  • Duchaufour P (1977) Précis de Pédologie. Masson, Paris

    Google Scholar 

  • Dumas JBA (1831) Procédés de l'analysc organique. Ann Chim Phys 247:198–213

    Google Scholar 

  • Eggleton RA, Tilley DB (1998) Hisingerite: a ferric kaolin mineral with curved morphology. Clay Clay Miner 46(4):400–413

    Article  CAS  Google Scholar 

  • Eswaran H, Sys C, Sousa EC (1975) Plasma infusions—a pedological process of significance in the humid tropics. Edafol Agrobiol 34:665–674

    Google Scholar 

  • FAO, Food and Agricultural Organization of the United Nations (2006) World Reference Base for Soil Resources 2006, 2nd edition. Rome, Italy

  • Fedoroff N (1991) Possibilities of palaeopedology for palaeoenvironmental reconstructions. In: Special Proceedings Symposia of the XIII INQUA Congress, Review report, Bei**g, China, pp 117-120

  • Fedoroff N (1997) Clay illuviation in Red Mediterranean soils. Catena 28:171–189

    Article  Google Scholar 

  • Fedoroff N, Eswaran H (1985) Micromorphology of ultisols. In: Douglas LA, Thompson ML (eds) Soil Micromorphology and Soil Classification. SSSA Special Publication, Number 15, Madison

  • Fedoroff N, Courty MA, Guo Z (2010) Palaesoils and relict soils. In: Stoops G, Marcellino V, Florias M (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 623–662

    Chapter  Google Scholar 

  • Fedoroff N, Courty MA, Thompson ML (1990) Micromorphological evidence of paleoenvironmental change in Pleistocene and Holocene paleosols. In: Douglas LA (ed) Soil Micromorphology: a Basic and Applied Science. Elsevier, Amsterdam, p 653–665

  • Fernández-Caliani J, Cantano M (2010) Intensive kaolinization during a lateritic weathering event in southwest Spain mineralogical and geochemical inferences from a relict paleosol. Catena 80:23–33

    Article  Google Scholar 

  • MiPAF (Ministero delle Politiche Agricole e Forestali) (2000) Osservatorio nazionale pedologico e per la qualità del suolo, International Society of Soil Science, Società Italiana della Scienza del Suolo. Metodi di analisi chimica del suolo. F. Angeli (ed), Milano

  • Gelati R, Gnaccolini M (1996) The stratigraphic record of the Oligocene-Early Miocene events at the south-western end of the Piedmont Tertiary Basin. Riv Ital Paleontol Stratigr 102(1):65–76

    Google Scholar 

  • Gelati R, Gnaccolini M (2003) Genesis and evolution of the Langhe basin, with emphasis on the latest Oligocene-earliest Miocene and Serravallian. Atti Ticinensi Sci Terra 44:3–18

    Google Scholar 

  • Gianmarino S, Tedeschi D (1983) Considerazioni geologico-stratigrafiche nel Pliocene di Albissola (Savona). Atti Soc Toscana Sci Nat Mem Ser A 90:211–216

    Google Scholar 

  • Ingles OG, Willoughby DR (1967) An occurance of hisingerite with evidence of its genesis. Soil Sci 104(5):383–385

    Article  CAS  Google Scholar 

  • Kennett DJ, Kennett JP, West GJ, Erlandson JM, Johnson JR, Hendy IL, West A, Culleton BJ, JonesThomas TL, Stafford W Jr (2008) Wildfire and abrupt ecosystem disruption on California’s Northern Channel Islands at the Ållerød–Younger Dryas boundary (13.0–12.9 ka). Quat Sci Rev 27:2528–2543

    Article  Google Scholar 

  • Köppen W (1936) Das geographische system der climate. In: Köppen and Geiger (eds) Handbuch der Klimatologie, Vol I, Part C. Gebrüder Borntraeger, Berlin, p 44

    Google Scholar 

  • Kovda I, Mermut AR (2010) Vertic features. In: Stoops G, Marcellino V, Florias M (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 109–127

    Chapter  Google Scholar 

  • Kubiena WL (1970) Micromorphological features of soil geography. Rutgers University Press, New Brunswick

    Google Scholar 

  • Lambeck K, Yokoyama Y, Purcella T (2002) Into and out of the Last Glacial Maximum: sea-level change during oxygen isotope stages 3 and 2. Quat Sci Rev 21:343–360

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanogr 20. doi:10.1029/2004PA001071

  • Magaldi D, Bidini D (1991) Microscopic and submicroscopic characterization of a well developed plinthite in a buried middle pleistocene soil in Northern Tuscany (Italy). Quad Scienza del Suolo III:31-44

  • McKeague JA (1983) Clay skins in argillic horizon. In: Bullock P, Murphy CP (eds) Soil Micromorphology. Soil Genesis vol. 2. A.B.. Academic Publishers, Berkhamsted, U.K., pp 367-388

  • Miedema R, Slager S (1972) Micromorphological quantification of clay illuviation. J Soil Sci 23:309–314

    Article  Google Scholar 

  • Migoń P, Lidmar-Bergström K (2002) Deep weathering through time in central and northwestern Europe: problems of dating and interpretation of geological record. Catena 49:25–40

    Article  Google Scholar 

  • Murphy CP (1983) Point counting pores and illuvial clay in thin sections. Geoderma 31:133–150

    Article  Google Scholar 

  • Murphy CP, Kemp RA (1984) The over-estimation of clay and the under-estimation of pores in soil thin sections. J Soil Sci 35:481–495

    Article  Google Scholar 

  • Nahon DB (1991) Introduction to the petrology of soils and chemical weathering. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Olsen S R, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circular 939, U.S. Gov. Print. Office, Washington, DC

  • Osher LJ, Buol SW (1998) Relationship of soil properties to parent material and landscape position in eastern Madre de Dios, Peru. Geoderma 83:143–166

    Article  Google Scholar 

  • Rellini I, Trombino L, Firpo M, Piccazzo M (2007) Geomorphological context of “plinthitic paleosols” in the mediterranean region: examples from the coast of western Liguria (Northern Italy). Rev Cuaternario Geomorfologia 21(1–2):27–40

    Google Scholar 

  • Rellini I, Firpo M, Martino G, Riel-Salvatore J, Maggi R (2013) Climate and environmental changes recognized by micromorphology in Paleolithic deposits at Arene Candide (Liguria, Italy). Quat Inter 315:42–55

    Article  Google Scholar 

  • Robert M, Tessier D (1974) Methodes de preparation des argiles des sols pour des etudes mineralogiques. Ann Agron 25:859–880

    CAS  Google Scholar 

  • Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in Soil Environments, 2nd edn. Soil Sci Soc Am, Madison, pp 379–438

    Google Scholar 

  • Simon M, Sanchez S, Garcia I (2000) Soil-landscape evolution on a Mediterranean high mountain. Catena 39:211–231

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2010) Keys to Soil Taxonomy, 11th edn. US Department of Agriculture, Soil Survey Staff, Natural Resources Conservation Service, Washington

    Google Scholar 

  • Sombroek WG (1971) Ancient levels of plinthisation in N.W. Nigeria. In: Yaalon DH (ed) Paleopedology. International Society of Soil Science and Israel University Press, Jerusalem, pp 329–336

    Google Scholar 

  • Stoops G (1989) Relict properties in soils of humid tropical regions with special reference to Central Africa. In: Bronger A, Catt JA (eds) Paleopedology, vol 16, Nature and Application of Paleosols, Catena Supplement., pp 95–106

    Google Scholar 

  • Stoops G (2001) Micropedology: Methods and Applications. International Training Centre for Post-Graduate Soil. Universiteit Gent, Scientists

    Google Scholar 

  • Stoops G (2003) Guidelines for Analysis and Description of Soil and Regolith Thin Section. Soil Science Society of America Inc, Madison

    Google Scholar 

  • Stoops G, Marcellino V (2010) Lateritic and Bauxitic Material. In: Stoops G, Marcellino V, Florias M (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 329–350

    Chapter  Google Scholar 

  • Stoops G, Marcellino V, Florias M (2010) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam

    Google Scholar 

  • Tardy Y (1993) Pétrologie des laterites et des sols tropicaux. Masson, Paris

    Google Scholar 

  • Tardy Y, Boeglin JL, Novikoff A, Roquin C (1995) Petrological and geochemical classification of laterites. In: Churchman GJ, Fitzpatrick RW, Eggleton RA (eds) Clays controlling the environment. CSIRO, Melbourne, pp 481–486

    Google Scholar 

  • Torrent J, Schwertmann U, Schulze DJ (1980) Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma 23:191–208

    Article  CAS  Google Scholar 

  • Trombino L (1996) Lateriti nelle Regioni Mediterranee: Studio Micromorfologico del Paleosuolo dell’Altopiano delle Mànie (Finale Ligure). Atti Ticinensi di Scienze della Terra, Serie Speciale 4:65–76

    Google Scholar 

  • Van Ranst E, Utami SR, Vanderdeelen J, Shamshuddin J (2004) Surface reactivity of Andisols on volcanic ash along the Sunda arc crossing Java Island, Indonesia. Geoderma 123:193–203

    Article  Google Scholar 

  • Van Vliet-Lanoë B (1998) Frost and soils: implications for paleosols, paleoclimates and stratigraphy. Catena 34:157–183

    Article  Google Scholar 

  • Vanossi M, Cortesogno L, Galbiati B, Messiga B, Piccardo G, Vannucci R (1984) Geologia delle Alpi Liguri: dati, problemi, ipotesi. Mem Soc Geol Ital 28:5–75

    Google Scholar 

  • Wang Y (2003) Coastal laterite profiles at Po Chue Tam, Lantau Island, Hong Kong: the origin and implication. Geomorphology 52:335–346

    Article  Google Scholar 

  • Wood BW, Perkins HF (1976) A field method for verifying plinthite in Southern Coastal Plain soils. Soil Sci 122:240–241

    Article  Google Scholar 

  • Yaalon DH (1997) Soil in Mediterranean region: what makes them different? Catena 28:233–251

    Article  Google Scholar 

  • Zazo C, Goy JL, Dabrio CJ, Bardají T, Hillaire-Marcel C, Ghaleb B, González-Delgado JA, Sole V (2003) Pleistocene raised marine terraces of the Spanish Mediterranean and Atlantic coasts: records of coastal uplift, sea-level highstands and climate changes. Mar Geol 194(1-2):103–133

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Georges Stoops for the very interesting discussions and his suggestions and valuable help during the micromorphological study at “Laboratorium voor Mineralogie, Petrologie en Micropedologie” of Ghent University. We also greatly appreciate the support of Lorenzo Rellini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivano Rellini.

Additional information

Responsible editor: Markus Egli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rellini, I., Trombino, L., Carbone, C. et al. Petroplinthite formation in a pedosedimentary sequence along a northern Mediterranean coast: from micromorphology to landscape evolution. J Soils Sediments 15, 1311–1328 (2015). https://doi.org/10.1007/s11368-014-0896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0896-2

Keywords

Navigation