Log in

Learning ratio performance on a brief visual learning and memory test moderates cognitive training gains in Double Decision task in healthy older adults

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Cognitive training using a visual speed-of-processing task, called the Useful Field of View (UFOV) task, reduced dementia risk and reduced decline in activities of daily living at a 10-year follow-up in older adults. However, there was variability in the achievement of cognitive gains after cognitive training across studies, suggesting moderating factors. Learning trials of visual and verbal learning tasks recruit similar cognitive abilities and have overlap** neural correlates with speed-of-processing/working memory tasks and therefore could serve as potential moderators of cognitive training gains. This study explored the association between the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) learning with a commercial UFOV task called Double Decision. Through a secondary analysis of a clinical trial, we assessed the moderation of HVLT-R and BVMT-R learning on Double Decision improvement after a 3-month speed-of-processing/attention and working memory cognitive training intervention in a sample of 75 cognitively healthy older adults. Multiple linear regressions showed that better baseline Double Decision performance was significantly associated with better BVMT-R learning (β =  − .303). This association was not significant for HVLT-R learning (β =  − .142). Moderation analysis showed that those with poorer BVMT-R learning improved the most on the Double Decision task after cognitive training. This suggests that healthy older adults who perform below expectations on cognitive tasks related to the training task may show the greatest training gains. Future cognitive training research studying visual speed-of-processing interventions should account for differing levels of visuospatial learning at baseline, as this could impact the magnitude of training outcomes and efficacy of the intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kueider AM, Bichay K, Rebok G. Cognitive training for older adults: what is it and does it work. Cent Ageing Am Inst Res. 2014;1–8.

  2. Rebok GW, Ball K, Guey LT, Jones RN, Kim H-Y, King JW, et al. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc. 2014;62:16–24. https://doi.org/10.1111/jgs.12607.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Edwards JD, Xu H, Clark DO, Guey LT, Ross LA, Unverzagt FW. Speed of processing training results in lower risk of dementia. Alzheimers Dement Transl Res Clin Interv. 2017;3:603–11. https://doi.org/10.1016/j.trci.2017.09.002.

    Article  Google Scholar 

  4. Ball KK, Owsley C. The useful field of view test: a new technique for evaluating age-related declines in visual function. J Am Optom Assoc. 1993;64:71–9.

    CAS  PubMed  Google Scholar 

  5. Woutersen K, Guadron L, van den Berg AV, Boonstra FN, Theelen T, Goossens J. A meta-analysis of perceptual and cognitive functions involved in useful-field-of-view test performance. J Vis. 2017;17:11. https://doi.org/10.1167/17.14.11.

    Article  PubMed  Google Scholar 

  6. Aust F, Edwards JD. Incremental validity of Useful Field of View subtests for the prediction of instrumental activities of daily living. J Clin Exp Neuropsychol. 2016;38:497–515. https://doi.org/10.1080/13803395.2015.1125453.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clay OJ, Wadley VG, Edwards JD, Roth DL, Roenker DL, Ball KK. Cumulative meta-analysis of the relationship between useful field of view and driving performance in older adults: current and future implications. Optom Vis Sci. 2005;82:724–31. https://doi.org/10.1097/01.opx.0000175009.08626.65.

    Article  PubMed  Google Scholar 

  8. Edwards JD, Fausto BA, Tetlow AM, Corona RT, Valdés EG. Systematic review and meta-analyses of useful field of view cognitive training. Neurosci Biobehav Rev. 2018;84:72–91. https://doi.org/10.1016/j.neubiorev.2017.11.004.

    Article  PubMed  Google Scholar 

  9. Fausto B, Tetlow A, Corona R, Valdés E, Edwards J. Useful field of view cognitive training improves older adults’ everyday function. Innov Aging. 2018;2:680–680. https://doi.org/10.1093/geroni/igy023.2532.

    Article  PubMed Central  Google Scholar 

  10. Cheng Y, Wu W, Feng W, Wang J, Chen Y, Shen Y, et al. The effects of multi-domain versus single-domain cognitive training in non-demented older people: a randomized controlled trial. BMC Med. 2012;10:30. https://doi.org/10.1186/1741-7015-10-30.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kueider AM, Parisi JM, Gross AL, Rebok GW. Computerized cognitive training with older adults: a systematic review. PLoS ONE. 2012;7: e40588. https://doi.org/10.1371/journal.pone.0040588.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mewborn CM, Lindbergh CA, Stephen ML. Cognitive interventions for cognitively healthy, mildly impaired, and mixed samples of older adults: a systematic review and meta-analysis of randomized-controlled trials. Neuropsychol Rev. 2017;27:403–39. https://doi.org/10.1007/s11065-017-9350-8.

    Article  PubMed  Google Scholar 

  13. Buitenweg J, Murre J, Ridderinkhof KR. Brain training in progress: a review of trainability in healthy seniors. Front Hum Neurosci. 2012;6:1–11.

  14. Guye S, De Simoni C, von Bastian CC. Do individual differences predict change in cognitive training performance? A latent growth curve modeling approach. J Cogn Enhanc. 2017;1:374–93. https://doi.org/10.1007/s41465-017-0049-9.

    Article  Google Scholar 

  15. Ball KK, Edwards JD, Ross LA. The impact of speed of processing training on cognitive and everyday functions. J Gerontol Ser B. 2007;62:19–31. https://doi.org/10.1093/geronb/62.special_issue_1.19.

    Article  Google Scholar 

  16. Matysiak O, Kroemeke A, Brzezicka A. Working memory capacity as a predictor of cognitive training efficacy in the elderly population. Front Aging Neurosci. 2019;11:126–126. https://doi.org/10.3389/fnagi.2019.00126.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Melby-Lervåg M, Hulme C. Is working memory training effective? A meta-analytic review Dev Psychol. 2013;49:270–91. https://doi.org/10.1037/a0028228.

    Article  PubMed  Google Scholar 

  18. Tremont G, Hoffman RG, Scott JG, Adams RL. Effect of intellectual level on neuropsychological test performance: a response to Dodrill (1997). Clin Neuropsychol. 1998;12:560–7.

    Article  Google Scholar 

  19. Lee H, Boot WR, Baniqued PL, Voss MW, Prakash RS, Basak C, et al. The relationship between intelligence and training gains is moderated by training strategy. PLoS ONE. 2015;10: e0123259.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Christensen H, Mackinnon A, Jorm A, Henderson A, Scott L, Korten A. Age differences and interindividual variation in cognition in community-dwelling elderly. Psychol Aging. 1994;9:381.

    Article  CAS  PubMed  Google Scholar 

  21. De Felice S, Holland CA. Intra-individual variability across fluid cognition can reveal qualitatively different cognitive styles of the aging brain. Front Psychol. 2018;9:1–16.

  22. Zinke K, Zeintl M, Rose NS, Putzmann J, Pydde A, Kliegel M. Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Dev Psychol. 2014;50:304.

    Article  PubMed  Google Scholar 

  23. Traut HJ, Guild RM, Munakata Y. Why does cognitive training yield inconsistent benefits? A meta-analysis of individual differences in baseline cognitive abilities and training outcomes. Front Psychol. 2021;12:1–20.

  24. Hammers DB, Suhrie K, Dixon A, Gradwohl BD, Duff K, Spencer RJ. Validation of HVLT-R, BVMT-R, and RBANS learning slope scores along the Alzheimer’s continuum. Arch Clin Neuropsychol. 2022;37:78–90. https://doi.org/10.1093/arclin/acab023.

    Article  PubMed  Google Scholar 

  25. Havlík F, Mana J, Dušek P, Jech R, Růžička E, Kopeček M, et al. Brief Visuospatial Memory Test-Revised: normative data and clinical utility of learning indices in Parkinson’s disease. J Clin Exp Neuropsychol. 2020;42:1099–110. https://doi.org/10.1080/13803395.2020.1845303.

    Article  PubMed  Google Scholar 

  26. Wasserman V, Emrani S, Matusz EF, Miller D, Garrett KD, Gifford KA, et al. Visual and verbal serial list learning in patients with statistically-determined mild cognitive impairment. Innov Aging. 2019;3:1–12. https://doi.org/10.1093/geroni/igz009.

  27. Duff K, Schoenberg MR, Scott JG, Adams RL. The relationship between executive functioning and verbal and visual learning and memory. Arch Clin Neuropsychol. 2005;20:111–22. https://doi.org/10.1016/j.acn.2004.03.003.

    Article  PubMed  Google Scholar 

  28. John SE, Ritter A, Wong C, Parks CM. The roles of executive functioning, simple attention, and medial temporal lobes in early learning, late learning, and delayed recall. Aging Neuropsychol Cogn. 2022;29:400–17. https://doi.org/10.1080/13825585.2021.2016583.

    Article  Google Scholar 

  29. Jones RN, Rosenberg AL, Morris JN, Allaire JC, McCoy KJ, Marsiske M, et al. A growth curve model of learning acquisition among cognitively normal older adults. Exp Aging Res. 2005;31:291–312.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kane KD, Yochim BP. Construct Validity and Extended Normative Data for Older Adults for the Brief Visuospatial Memory Test. Revised Am J Alzheimers Dis Dementiasr. 2014;29:601–6. https://doi.org/10.1177/1533317514524812.

    Article  Google Scholar 

  31. Vanderploeg RD, Schinka JA, Retzlaff P. Relationships between measures of auditory verbal learning and executive functioning. J Clin Exp Neuropsychol. 1994;16:243–52. https://doi.org/10.1080/01688639408402635.

    Article  CAS  PubMed  Google Scholar 

  32. Walhovd KB, Bråthen ACS, Panizzon MS, Mowinckel AM, Sørensen Ø, de Lange A-MG, et al. Within-session verbal learning slope is predictive of lifespan delayed recall, hippocampal volume, and memory training benefit, and is heritable. Sci Rep. 2020;10. https://doi.org/10.1038/s41598-020-78225-1.

  33. Gifford KA, Phillips JS, Samuels LR, Lane EM, Bell SP, Liu D, et al. Associations between verbal learning slope and neuroimaging markers across the cognitive aging spectrum. J Int Neuropsychol Soc. 2015;21:455–67. https://doi.org/10.1017/S1355617715000430.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luria A. Higher cortical functions in man. New York: Consultants Bureau Enterprises. Inc Diskuss; 1966.

    Google Scholar 

  35. Bonner-Jackson A, Mahmoud S, Miller J, Banks SJ. Verbal and non-verbal memory and hippocampal volumes in a memory clinic population. Alzheimers Res Ther. 2015;7:61. https://doi.org/10.1186/s13195-015-0147-9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bowes JR, Stroman P, Garcia A. Neural correlates of focused attention in cognitively normal older adults. World J Neurosci. 2011;1:19.

    Article  Google Scholar 

  37. Hardcastle C, O’Shea A, Kraft JN, Albizu A, Evangelista ND, Hausman HK, et al. Contributions of hippocampal volume to cognition in healthy older adults. Front Aging Neurosci. 2020;12:1–10.

  38. Kraft JN, O’Shea A, Albizu A, Evangelista ND, Hausman HK, Boutzoukas E, et al. Structural neural correlates of Double Decision performance in older adults. Front Aging Neurosci. 2020;12:278. https://doi.org/10.3389/fnagi.2020.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kraft JN, Albizu A, O’Shea A, Hausman HK, Evangelista ND, Boutzoukas E, et al. Functional neural correlates of a Useful Field of View (UFOV)-based fMRI Task in older adults. Cereb Cortex 2021;32:1993–2012. https://doi.org/10.1093/cercor/bhab332.

  40. Nissim NR, O’Shea AM, Bryant V, Porges EC, Cohen R, Woods AJ. Frontal structural neural correlates of working memory performance in older adults. Front Aging Neurosci. 2017;8:328–328. https://doi.org/10.3389/fnagi.2016.00328.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun X, Zhang X, Chen X, Zhang P, Bao M, Zhang D, et al. Age-dependent brain activation during forward and backward digit recall revealed by fMRI. Neuroimage. 2005;26:36–47. https://doi.org/10.1016/j.neuroimage.2005.01.022.

    Article  CAS  PubMed  Google Scholar 

  42. Zanto TP, Gazzaley A. Aging of the frontal lobe. Handb. Clin. Neurol. 2019;163:369–389. https://doi.org/10.1016/B978-0-12-804281-6.00020-3.

  43. Schoenberg MR, Scott JG. The little black book of neuropsychology: a syndrome-based approach. Springer; 2011.

  44. Hardcastle C, Hausman HK, Kraft JN, Albizu A, O’Shea A, Boutzoukas EM, et al. Proximal improvement and higher-order resting state network change after multidomain cognitive training intervention in healthy older adults. GeroScience. 2022. https://doi.org/10.1007/s11357-022-00535-1.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Woods AJ, Cohen R, Marsiske M, Alexander GE, Czaja SJ, Wu S. Augmenting cognitive training in older adults (The ACT Study): design and methods of a phase III tDCS and cognitive training trial. Contemp Clin Trials. 2018;65:19–32. https://doi.org/10.1016/j.cct.2017.11.017.

    Article  PubMed  Google Scholar 

  46. Weintraub S, Besser L, Dodge HH, Teylan M, Ferris S, Goldstein FC, et al. Version 3 of the Alzheimer Disease Centers’ Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord. 2018;32:10–7. https://doi.org/10.1097/WAD.0000000000000223.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Edwards JD, Hauser RA, O’Connor ML, Valdés EG, Zesiewicz TA, Uc EY. Randomized trial of cognitive speed of processing training in Parkinson disease. Neurology. 2013;81:1284. https://doi.org/10.1212/WNL.0b013e3182a823ba.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ross LA, Webb CE, Whitaker C, Hicks JM, Schmidt EL, Samimy S, et al. The effects of useful field of view training on brain activity and connectivity. J Gerontol Ser B. 2019;74:1152–62. https://doi.org/10.1093/geronb/gby041.

    Article  Google Scholar 

  49. Benedict RHB, Schretlen D, Groninger L, Brandt J. Hopkins Verbal Learning Test – Revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol. 1998;12:43–55. https://doi.org/10.1076/clin.12.1.43.1726.

    Article  Google Scholar 

  50. Benedict RHB, Schretlen D, Groninger L, Dobraski M, Shpritz B. Revision of the Brief Visuospatial Memory Test: studies of normal performance, reliability, and validity. Psychol Assess. 1996;8:145.

    Article  Google Scholar 

  51. Spencer RJ, Gradwohl BD, Williams TF, Kordovski VM, Hammers DB. Develo** learning slope scores for the repeatable battery for the assessment of neuropsychological status. Appl Neuropsychol Adult. 2020:29;584–590. https://doi.org/10.1080/23279095.2020.1791870.

  52. Duff K. Demographically corrected normative data for the Hopkins Verbal Learning Test-Revised and Brief Visuospatial Memory Test-Revised in an elderly sample. Appl Neuropsychol Adult. 2016;23:179–85. https://doi.org/10.1080/23279095.2015.1030019.

    Article  PubMed  Google Scholar 

  53. McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM. Sex differences in cognitive trajectories in clinically normal older adults. Psychol Aging. 2016;31:166–75. https://doi.org/10.1037/pag0000070.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Van Hooren S, Valentijn A, Bosma H, Ponds R, Van Boxtel M, Jolles J. Cognitive functioning in healthy older adults aged 64–81: a cohort study into the effects of age, sex, and education. Aging Neuropsychol Cogn. 2007;14:40–54.

    Article  Google Scholar 

  55. Montoya AK. Moderation analysis in two-instance repeated measures designs: probing methods and multiple moderator models. Behav Res Methods. 2019;51:61–82. https://doi.org/10.3758/s13428-018-1088-6.

    Article  PubMed  Google Scholar 

  56. Tam JW, Schmitter-Edgecombe M. The Role of Processing Speed in the Brief Visuospatial Memory Test – Revised. Clin Neuropsychol. 2013;27:962–72. https://doi.org/10.1080/13854046.2013.797500.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Melrose RJ, Zahniser E, Wilkins SS, Veliz J, Hasratian AS, Sultzer DL, et al. Prefrontal working memory activity predicts episodic memory performance: a neuroimaging study. Behav Brain Res. 2020;379: 112307.

    Article  PubMed  Google Scholar 

  58. Zink DN, Miller JB, Caldwell JZK, Bird C, Banks SJ. The relationship between neuropsychological tests of visuospatial function and lobar cortical thickness. J Clin Exp Neuropsychol. 2018;40:518–27. https://doi.org/10.1080/13803395.2017.1384799.

    Article  PubMed  Google Scholar 

  59. Hardcastle C, Hausman HK, Kraft JN, Albizu A, Evangelista ND, Boutzoukas EM, et al. Higher-order resting state network association with the useful field of view task in older adults. GeroScience. 2022;44:131–45. https://doi.org/10.1007/s11357-021-00441-y.

    Article  PubMed  Google Scholar 

  60. Yoon EJ, Cho SS, Bang SA, Park HS, Kim YK, Lee WW, et al. Neural correlate of verbal episodic memory: encoding, retrieval, and retrieval strategy 2007;241.

  61. Andrews G, Halford GS, Shum DHK, Maujean A, Chappell M, Birney DP. Verbal learning and memory following stroke. Brain Inj. 2014;28:442–7. https://doi.org/10.3109/02699052.2014.888758.

    Article  PubMed  Google Scholar 

  62. Faraza S, Waldenmaier J, Dyrba M, Wolf D, Fischer FU, Knaepen K, et al. Dorsolateral prefrontal functional connectivity predicts working memory training gains. Front Aging Neurosci. 2021;13:1–11. https://doi.org/10.3389/fnagi.2021.592261.

  63. Mondini S, Madella I, Zangrossi A, Bigolin A, Tomasi C, Michieletto M, et al. Cognitive reserve in dementia: implications for cognitive training. Front Aging Neurosci. 2016;8:1–7. https://doi.org/10.3389/fnagi.2016.00084.

  64. Chen C, Zissimopoulos JM. Racial and ethnic differences in trends in dementia prevalence and risk factors in the United States. Alzheimers Dement Transl Res Clin Interv. 2018;4:510–520. https://doi.org/10.1016/j.trci.2018.08.009.

    Article  Google Scholar 

  65. Chin AL, Negash S, Hamilton R. Diversity and disparity in dementia: the impact of ethnoracial differences in Alzheimer disease. Alzheimer Dis Assoc Disord. 2011;25:187–95. https://doi.org/10.1097/WAD.0b013e318211c6c9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Majoka MA, Schimming C. Effect of social determinants of health on cognition and risk of Alzheimer disease and related dementias. Clin Ther. 2021;43:922–9. https://doi.org/10.1016/j.clinthera.2021.05.005.

    Article  PubMed  Google Scholar 

  67. Rossetti HC, Lacritz LH, Hynan LS, Cullum CM, Van Wright A, Weiner MF. Montreal cognitive assessment performance among community-dwelling African Americans. Arch Clin Neuropsychol. 2017;32:238–44. https://doi.org/10.1093/arclin/acw095.

    Article  PubMed  Google Scholar 

  68. Brailean A, Comijs HC, Aartsen MJ, Prince M, Prina AM, Beekman A, et al. Late-life depression symptom dimensions and cognitive functioning in the Longitudinal Aging Study Amsterdam (LASA). J Affect Disord. 2016;201:171–8. https://doi.org/10.1016/j.jad.2016.05.027.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Motter JN, Pimontel MA, Rindskopf D, Devanand DP, Doraiswamy PM, Sneed JR. Computerized cognitive training and functional recovery in major depressive disorder: a meta-analysis. J Affect Disord. 2016;189:184–91. https://doi.org/10.1016/j.jad.2015.09.022.

    Article  PubMed  Google Scholar 

  70. Pocklington C. Depression in older adults. Br J Med Pract. 2017;10: a1007.

    Google Scholar 

  71. Jenkins L, Myerson J, Joerding JA, Hale S. Converging evidence that visuospatial cognition is more age-sensitive than verbal cognition. Psychol Aging. 2000;15:157.

    Article  CAS  PubMed  Google Scholar 

  72. Salimi S, Irish M, Foxe D, Hodges JR, Piguet O, Burrell JR. Can visuospatial measures improve the diagnosis of Alzheimer’s disease? Alzheimers Dement Diagn Assess Dis Monit. 2018;10:66–74. https://doi.org/10.1016/j.dadm.2017.10.004.

    Article  Google Scholar 

  73. Nicholson JS, Hudak EM, Phillips CB, Chanti-Ketterl M, O’Brien JL, Ross LA, et al. The Preventing Alzheimer’s with Cognitive Training (PACT) randomized clinical trial. Contemp Clin Trials. 2022;123: 106978.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all of our participants for their time and research assistants for their hard work and instrumental role in making this manuscript possible.

Funding

The study was financially supported by the National Institute of Aging/National Institutes of Health (T32AG020499, K01AG050707, R01AG054077, P30AG019610, and T32AG061892), the University of Florida Center for Cognitive Aging and Memory Clinical Translational Research, the state of Arizona and Arizona Department of Health Services, the McKnight Brain Research Foundation, and National Heart, Lung, and Blood Institute (T32HL134621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Woods.

Ethics declarations

Declarations

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardcastle, C., Kraft, J.N., Hausman, H.K. et al. Learning ratio performance on a brief visual learning and memory test moderates cognitive training gains in Double Decision task in healthy older adults. GeroScience (2024). https://doi.org/10.1007/s11357-024-01115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01115-1

Keywords

Navigation