Log in

Morphological and biochemical responses of Vicia faba (faba beans) grown on fly ash amended soil in the presence of Rhizobium leguminosarum and arbuscular mycorrhizal fungus

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An experiment was conducted in the greenhouse to investigate the feasibility of Vicia faba grown on different fly ash concentrations (0–30%) and dual inoculation with Rhizobium and arbuscular mycorrhizal fungi (AMF). Sampling was done 45 days after sowing to analyse the plant growth parameters, photosynthetic attributes (total chlorophyll and carotenoids content), protein content, nitrogen (N) and phosphorus (P) content, defensive factors (antioxidant activity and proline content) and damage markers (lipid peroxidation, reactive oxygen species and cell viability). The results revealed that the application of fly ash (FA) alone did not result in any significant improvement in growth, biochemical and physiological parameters. However, dual inoculation showed a synergistic impact on legume growth, photosynthetic pigments, protein, proline, and cell viability. Rhizobium, AMF and 10% FA showed maximum enhancement in all attributes mentioned. 20% and 30% fly doses showed a reduction in growth, photosynthesis and antioxidants and caused oxidative stress via lipid peroxidation. The results showed that the synergistic or combined interactions between all three variables of the symbiotic relationship (Rhizobium-legume-AMF) boosted plant productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and its supplementary information files.

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105(84):121–126. https://doi.org/10.1016/S00766879(84)05016

    Article  CAS  Google Scholar 

  • Al-Garni SM (2006) Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afr J Biotech 5(2):133–142

    CAS  Google Scholar 

  • Alluqmani SM, Alabdallah NM (2022) The effect of thermally heated carbon nanoparticles of oil fly ash on tomato (Solanum lycopersicum l.) under salt stress. J Soil Sci Plant Nutri 22(4):5123–5132

    Article  CAS  Google Scholar 

  • Andrad SA, Abreu MF, Silveira AP (2004) Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Appl Soil Ecol 26(2):123–131. https://doi.org/10.1016/j.apsoil.2003.11.002

    Article  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42. https://doi.org/10.1007/s005720100097

    Article  Google Scholar 

  • Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 1288–1293

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwen 81:343–351. https://doi.org/10.1023/A:1020588701325

    Article  CAS  Google Scholar 

  • Bates LS, Walden RT, Tearse ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068. https://doi.org/10.3389/fpls.2019.01068

    Article  Google Scholar 

  • Beyer Jr WF, Fridovich (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161(2):559-66https://doi.org/10.1016/0003-2697(87)90489-1

  • Bhattacharjya S, Chandra R (2013) Effect of inoculation methods of Mesorhizobium ciceri and PGPR in chickpea (Cicer areietinum L.) on symbiotic traits, yields, nutrient uptake and soil properties. Legume Res Intl J 36(4):331–337

    Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cairney JWG, Meharg AA (2000) Influences of anthro-pogenic pollution on mycorrhizal fungal communities. Environ Pollut 106:169–182. https://doi.org/10.1016/S0269-7491(99)00081-0

    Article  Google Scholar 

  • Çakmak I, Horst JH (1991) Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x

    Article  Google Scholar 

  • Chaudhary SK, Inouhe M, Rai UN, Mishra K, Gupta DK (2011) Inoculation of Rhizobium (VR-1 and VA-1) induces an increasing growth and metal accumulation potential in Vigna radiata and Vigna angularis L. growing under fly-ash. Ecol Eng 37(8):1254–1257

    Article  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front Microbiol 6:780

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  Google Scholar 

  • Demir S, Akkopru A (2007) Use of arbuscular mycorrhizal fungi for biocontrol of soilborne fungal plant pathogens. Biol Control Plant Diseas 17–46

  • Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470. https://doi.org/10.3389/fpls.2019.00470

    Article  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217. https://doi.org/10.1007/s00572-011-0392-0

    Article  CAS  Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. Comptes Rendus Biologies 338(4):241–254

    Article  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66(2):375–400

    Article  CAS  Google Scholar 

  • Gajic G, Pavlovic P, Kostic O, Jaric S, Djurdjevic L, Pavlovic D, Mitrovic M (2013) Ecophysiological and biochemical traits of three herbaceous plants growing on the disposed coal combustion fly ash of different weathering stage. Arch Biol Sci 65(4):1651–1667. https://doi.org/10.2298/ABS1304651G

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. https://doi.org/10.1007/s00572-010-0333-3

    Article  Google Scholar 

  • Harris J (2009) Soil microbial communities and restoration ecology: facilitators or followers? Science 325(5940):573–574

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Antioxidant activities of enzymatic extracts from brown seaweeds. Biores Technol 96(14):1613–1623. https://doi.org/10.1016/j.biortech.2004.07.013

    Article  CAS  Google Scholar 

  • Hussain A, Faizan S (2023) Rhizobium induced modulation of growth and photosynthetic efficiency of Lens culinaris Medik. grown on fly ash amended soil by antioxidants regulation. Environ Sci Pollut Res 30:46295–46305. https://doi.org/10.1007/s11356-023-25616-2

    Article  CAS  Google Scholar 

  • Hussain A, Ali J, Faizan S (2023) Exploring the scientific research on coal fly ash and agriculture: knowledge map** and future research directions. Environ Sci Pollut Res 1–14

  • Ismaiel AA, Hegazy HS, Azb MA (2014) Physiological response of “Vicia faba” L. to inoculation with “Rhizobium” and arbuscular mycorrhizal fungi: comparative study for irrigation with Nile water and wastewater. Austr J Crop Sci 8(5):781–790

    CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S et al (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16. https://doi.org/10.1007/s00374-002-0546-5

    Article  Google Scholar 

  • Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H (2019) Impact of co-inoculation with plant-growth-promoting rhizobacteria and Rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol Environ Saf 167:218–226

    Article  CAS  Google Scholar 

  • Kalam S, Das SN, Basu A, Podile AR (2017) Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. J Basic Microbiol 57(5):376–385

    Article  CAS  Google Scholar 

  • Kaur N, Sharma I, Kirat K, Pati P (2016) Detection of reactive oxygen species in Oryza sativa L. (Rice). BIO-PROTOCOL 6:. https://doi.org/10.21769/bioprotoc.2061

  • Khazaei H, Purves RW, Hughes J et al (2019) Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends Food Sci Technol 91:549–556. https://doi.org/10.1016/j.tifs.2019.07.051

    Article  CAS  Google Scholar 

  • Kumar R, Thangaraju MM, Kumar M, Thul ST, Pandey VC, Yadav S, Singh L, Kumar S (2021) Ecological restoration of coal fly ash-dumped area through bamboo plantation. Environ Sci Pollut Res Int https://doi.org/10.1007/s11356-021-12995-7

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374:523–537

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS Spectroscopy. Current protocols in food analytical chemistry 1:F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

  • Lindner RC (1944) Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol 19(1):76

    Article  CAS  Google Scholar 

  • Liu A, Ku Y-S, Contador CA, Lam H-M (2020) The impacts of domestication and agricultural practices on legume nutrient acquisition through symbiosis with rhizobia and arbuscular mycorrhizal fungi. Front Gen 11. https://doi.org/10.3389/fgene.2020.583954

  • Liu C, Pei R, Heinonen M (2022) Faba bean protein: a promising plant-based emulsifier for improving physical and oxidative stabilities of oil-in-water emulsions. Food Chem 369:130879. https://doi.org/10.1016/j.foodchem.2021.130879

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM (2010) Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Intl J System Evol Microbiol 60(10):2490–2495

    Article  CAS  Google Scholar 

  • Mandal SM, Bhattacharyya R (2012) Rhizobium–legume symbiosis: a model system for the recovery of metal-contaminated agricultural land. Toxicity of heavy metals to legumes and bioremediation. Springer Vienna, Vienna, pp 115–127

    Chapter  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biology and Biochemistry 39(8):2014–2026

    Article  CAS  Google Scholar 

  • Molina L, Wittich R-M, van Dillewijn P, Segura A (2021) Plant-bacteria interactions for the elimination of atmospheric contaminants in cities. Agronomy 11:493. https://doi.org/10.3390/agronomy11030493

    Article  CAS  Google Scholar 

  • Nisha K, Kuldeep Y, Ashok A (2014) Application of AM Fungi with Bradyrhizobium japonicum in improving growth, nutrient uptake and yield of Vigna radiata L. under saline soil. J Stress Physiol Biochem 10(3):134–52

    Google Scholar 

  • Panda D, Panda D, Padhan B, Biswas M (2018) Growth and physiological response of lemongrass (Cymbopogon citratus(D.C.) Stapf.) under different levels of fly ash-amended soil. Int J Phytorem 20:538–544. https://doi.org/10.1080/15226514.2017.1393394

    Article  CAS  Google Scholar 

  • Pandey SK, Bhattacharya T (2018) Effect of two biodegradable chelates on metals uptake, translocation and biochemical changes of Lantana Camara growing in fly ash amended soil. Int J Phytorem 20(3):214–224. https://doi.org/10.1080/15226514.2017.1365350

    Article  CAS  Google Scholar 

  • Pandey VC, Singh JS, Kumar A, Tewari DD (2010) Accumulation of heavy metals by chickpea grown in fly ash treated soil: effect on antioxidants. CLEAN–Soil, Air, Water 38(12):1116–1123.

  • Parab N, Mishra S, Bhonde SR (2012) Prospects of bulk utilization of fly ash in agriculture for integrated nutrient management. Bull Nat Inst Ecol 23:31–46

    Google Scholar 

  • Rabie GH (2005) Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. Afr J Biotech 4(4):332–345

    CAS  Google Scholar 

  • Rabie GH, Aboul-Nasr MB, Al-Humiany A (2005) Increased salinity tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarumand a nitrogen-fixer Azospirillum brasilense. Mycobiology 33:51. https://doi.org/10.4489/myco.2005.33.1.051

    Article  CAS  Google Scholar 

  • Rai UN, Pandey K, Sinha S, Singh A, Saxena R, Gupta DK (2004) Revegetating fly ash landfills with Prosopis juliflora L. impact of different amendments and Rhizobium inoculation. Environ Intl 30(3):293–300. https://doi.org/10.1016/S0160-4120(03)00179X

    Article  CAS  Google Scholar 

  • Rajasekaran S, Nagarajan SM (2006) Effect of dual inoculation (AM Fungi and Rhizobium) on chlorophyll content of Vigna unguiculata (L.) Walp. Var. Pusa 151. Mycorrhiza News 17(1):10–1.

  • Ramos AC, Lima PT, Dias PN, Kasuya MCM, Feijó JA (2009) A pH signaling mechanism involved in the spatial distribution of calcium and anion fluxes in ectomycorrhizal roots. New Phytol 181(2):448–462

    Article  CAS  Google Scholar 

  • Ray P, Reddy UG, Lapeyrie F, Adholeya A (2005) Effect of coal ash on growth and metal uptake by some selected Ectomycorrhizal fungi in vitro. Int J Phytorem 7:199–216. https://doi.org/10.1080/16226510500214673

    Article  CAS  Google Scholar 

  • Sampathkumar G, Ganeshkumar A (2003) Effect of AM fungi and Rhizobium on growth and nutrition of Vigna mungo L. and Vingna unguiculata L. Mycorrhiza News 14(4):15–18

    Google Scholar 

  • Sánchez M (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann Bot 75:415–419. https://doi.org/10.1006/anbo.1995.1039

    Article  Google Scholar 

  • Scheublin TR, Van Der Heijden MGA (2006) Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species. New Phytol 172:732–738. https://doi.org/10.1111/j.1469-8137.2006.01858.x

    Article  Google Scholar 

  • Sharma B, Kothari R, Singh RP (2018) Growth performance, metal accumulation and biochemical responses of Palak (Beta vulgaris L. var. Allgreen H-1) grown on soil amended with sewage sludge-fly ash mixtures. Environ Sci Pollut Res 25:12619–12640. https://doi.org/10.1007/s11356-018-1475-7

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:1–14

    Article  Google Scholar 

  • Singh JS, Pandey VC (2013) Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields. Ecotoxicol Environ Saf 89:43–51

    Article  CAS  Google Scholar 

  • Singh K, Khan AA, Khan I, Rizvi R, Saquib M (2010) Morphological and biochemical resposes of cow pea (cv. pusa barsati) grown on fly ash amended soil in presence and absence of Meloidogyne Javanica and Rhizobium leguminosarum. Ecoprint: Intl J Ecol 17:17–22

  • Smith SE, Facelli E, Pope S, Andrew Smith F (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Soumare A, Diop T, Manga A, Ndoye I (2015) Role of arbuscular mycorrhizal fungi and nitrogen fixing bacteria on legume growth under various environmental stresses. Int J Biosci 7(4):31–46

    Article  CAS  Google Scholar 

  • Tairo EV, Ndakidemi PA (2013) Bradyrhizobium japonicum inoculation and phosphorus supplementation on growth and chlorophyll accumulation in soybean (Glycine max L.). Am J Plant Sci 2013

  • Taupedi SB, Ultra VU Jr (2022) Morupule fly ash as amendments in agricultural soil in Central Botswana. Environ Technol Innov 28:102695

    Article  CAS  Google Scholar 

  • Taylor J, Harrier LA (2001) A comparison of development and mineral nutrition of micropropagated Fragaria×ananassa cv. Elvira (strawberry) when colonised by nine species of arbuscular mycorrhizal fungi. Appl Soil Ecol 18:205–215. https://doi.org/10.1016/s0929-1393(01)00164-0

    Article  Google Scholar 

  • Vejsadová H, Siblíková D, Hršelová H, Vančura V (1992) Effect of the VAM fungus Glomus sp. on the growth and yield of soybean inoculated with Bradyrhizobium japonicum. Plant Soil 140:121–125. https://doi.org/10.1007/bf00012813

    Article  Google Scholar 

  • Vishwakarma K, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A (2020) Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review. Front Microbiol 11:560406

    Article  Google Scholar 

  • Wang YL, Wei MY, Chen SJ (2008) Effects of Cr6+ on the growth and physiological and biochemical characteristics of Mentha crispata. J Anhui Agric Sci 36:7100–7102

    CAS  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34(2):181–188

    Article  CAS  Google Scholar 

  • Xavier LJ, Germida JJ (2003) Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol Fertil Soils 37:261–267

    Article  Google Scholar 

  • Xun F, **e B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608

    Article  CAS  Google Scholar 

  • Yu X, Cheng J, Wong MH (2005) Earthworm–mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem 37:195–201. https://doi.org/10.1016/j.soilbio.2004.07.029

    Article  CAS  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic Bacterium Kushneriasp. YCWA18 from Daqiao saltern on the Coast of Yellow Sea of China. Evidence-Based Complementary and Alternative Medicine 2011:1–6https://doi.org/10.1155/2011/615032

Download references

Acknowledgements

The authors are highly thankful to the Chairperson of Department of Botany, Aligarh Muslim University, India for providing the required facilities and assistance to carry out the experimental work. The author also acknowledges University Grants Commission for giving (UGC Non-NET) Fellowship and USIF, AMU for providing the SEM facility.

Author information

Authors and Affiliations

Authors

Contributions

Alisha Hussain: Investigation, methodology, formal analysis & writing. Shahla faizan: Editing & reviewing. Rinkee kumari and Ekta Pandey: Reviewing.

Corresponding author

Correspondence to Shahla Faizan.

Ethics declarations

Ethics approval

The present study did not include any experimentation or study with human participants or animals.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Faizan, S., Kumari, R. et al. Morphological and biochemical responses of Vicia faba (faba beans) grown on fly ash amended soil in the presence of Rhizobium leguminosarum and arbuscular mycorrhizal fungus. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-34154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-34154-4

Keywords

Navigation