Log in

Enhancing drought resilience: machine learning–based vulnerability assessment in Uttar Pradesh, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Drought is a natural and complex climatic hazard. It has both natural and social connotations. The purpose of this study is to use machine learning methods (MLAs) for drought vulnerability (DVM) in Uttar Pradesh, India. There were 18 factors used to determine drought vulnerability, separated into two groups: physical drought and meteorological drought. The study found that the eastern part of Uttar Pradesh is high to very highly prone to drought, which is approximately 31.38% of the area of Uttar Pradesh. The receiver operating characteristic curve (ROC) was then used to evaluate the machine learning models (artificial neural networks). According to the findings, the ANN functioned with AUC values of 0.843. For policy actions to lessen drought sensitivity, DVMs may be valuable. Future exploration may involve refining machine learning algorithms, integrating real-time data sources, and assessing the socio-economic impacts to continually enhance the efficacy of drought resilience strategies in Uttar Pradesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the data and materials related to the manuscript are published with the paper, and available from the first author upon request (barnalimalda29@gmail.com).

References

  • Acar C, Dincer I, Mujumdar A (2022) A comprehensive review of recent advances in renewable-based drying technologies for a sustainable future. Drying Technol 40(6):1029–1050

    Article  Google Scholar 

  • Achite M, Jehanzaib M, Elshaboury N, Kim TW (2022) Evaluation of machine learning techniques for hydrological drought modeling: a case study of the wadi ouahrane basin in algeria. Water 14(3):431

    Article  Google Scholar 

  • Afshar MH, Bulut B, Duzenli E, Amjad M, Yilmaz MT (2022) Global spatiotemporal consistency between meteorological and soil moisture drought indices. Agric for Meteorol 316:108848

    Article  Google Scholar 

  • Alahacoon N, Edirisinghe M (2022) A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat Nat Haz Risk 13(1):762–799

    Article  Google Scholar 

  • Alawsi MA, Zubaidi SL, Al-Ansari N, Al-Bugharbee H, Ridha HM (2022) Tuning ANN hyperparameters by CPSOCGSA, MPA, and SMA for short-term SPI drought forecasting. Atmosphere 13(9):1436

    Article  Google Scholar 

  • Albuquerque PC, Cajueiro DO, Rossi MD (2022) Machine learning models for forecasting power electricity consumption using a high dimensional dataset. Expert Syst Appl 187:115917

    Article  Google Scholar 

  • Alessi, M. J., Herrera, D. A., Evans, C. P., DeGaetano, A. T., & Ault, T. R. (2022). Soil moisture conditions determine land‐atmosphere coupling and drought risk in the Northeastern United States. Journal of Geophysical Research: Atmospheres, 127(6), e2021JD034740.

  • Aliramezani M, Koch CR, Shahbakhti M (2022) Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: a review and future directions. Prog Energy Combust Sci 88:100967

    Article  Google Scholar 

  • Anik AR, Rahman S, Sarker JR, Al Hasan M (2021) Farmers’ adaptation strategies to combat climate change in drought prone areas in Bangladesh. Intl J Disaster Risk Reduction 65:102562

    Article  Google Scholar 

  • Arabameri A, Chandra Pal S, Rezaie F, Chakrabortty R, Saha A, Blaschke T ... Thi Ngo PT (2022) Decision tree based ensemble machine learning approaches for landslide susceptibility map**. Geocarto Intl, 37(16), 4594–4627

  • Arabameri A, Chandra Pal S, Santosh M, Chakrabortty R, Roy P, Moayedi H (2022b) Drought risk assessment: integrating meteorological, hydrological, agricultural and socio-economic factors using ensemble models and geospatial techniques. Geocarto Int 37(21):6087–6115

    Article  Google Scholar 

  • Barzkar A, Najafzadeh M, Homaei F (2022) Evaluation of drought events in various climatic conditions using data-driven models and a reliability-based probabilistic model. Nat Hazards 110(3):1931–1952

    Article  Google Scholar 

  • Bedeke SB (2022) Climate change vulnerability and adaptation of crop producers in sub-Saharan Africa: a review on concepts, approaches and methods. Environ Dev Sustain, 1–35

  • Bendifallah S, Puchar A, Suisse S, Delbos L, Poilblanc M, Descamps P ... Daraï E (2022) Machine learning algorithms as new screening approach for patients with endometriosis. Scientific Reports, 12(1), 1–12

  • Birkmann J, Jamshed A, McMillan JM, Feldmeyer D, Totin E, Solecki W ... Alegría A (2022) Understanding human vulnerability to climate change: a global perspective on index validation for adaptation planning. Sci Total Environ, 803, 150065

  • Chen Z, Wang W, Wu Y, Yin H, Li W, Zhao S (2022) Temporal and spatial distribution characteristics of drought and its influence on vegetation change in **lin Gol. China Atmosphere 13(11):1743

    Article  Google Scholar 

  • Córdova M, Orellana‐Alvear J, Rollenbeck R, Célleri R (2022) Determination of climatic conditions related to precipitation anomalies in the Tropical Andes by means of the random forest algorithm and novel climate indices. International Journal of Climatology

  • Costa FR, Schietti J, Stark SC, Smith MN (2022) The other side of tropical forest drought: do shallow water table regions of Amazonia act as large‐scale hydrological refugia from drought?. New Phytologist

  • Das D, Singh T, Ahmed I, Masetty M, Priye A (2022) Effects of relative humidity and paper geometry on the imbibition dynamics and reactions in lateral flow assays. Langmuir 38(32):9863–9873

    Article  CAS  Google Scholar 

  • Dastorani M (2022) Application of fuzzy-AHP method for desertification assessment in Sabzevar area of Iran. Nat Hazards 112(1):187–205

    Article  Google Scholar 

  • Degórski M, Degórska B (2022) Sustainable regional development: environmental practices. In Regional Development Planning and Practice (pp. 3–31). Springer, Singapore

  • Dikshit A, Pradhan B, Santosh M (2022) Artificial neural networks in drought prediction in the 21st century–A scientometric analysis. Appl Soft Comput 114:108080

    Article  Google Scholar 

  • Dinesh Kumar M, Bassi N, Kumar S (2022) Managing rural drinking water supply across hydro-climatic zones of India. In drinking water security in rural India (pp. 155–178). Springer, Singapore

  • Dubey PK, Chaurasia R, Pandey KK, Bundela AK, Singh A, Singh GS, Abhilash PC (2023) Double transplantation as a climate resilient and sustainable resource management strategy for rice production in eastern Uttar Pradesh, north India. J Environ Manage 329:117082

    Article  CAS  Google Scholar 

  • Dukat P, Bednorz E, Ziemblińska K, Urbaniak M (2022) Trends in drought occurrence and severity at mid-latitude European stations (1951–2015) estimated using standardized precipitation (SPI) and precipitation and evapotranspiration (SPEI) indices. Meteorol Atmos Phys 134(1):1–21

    Article  Google Scholar 

  • Dutta D, Gupta S, Chakraborty A (2022) Effect of different land use land cover on surface heat budget–a case study from a tropical humid region of India. Remote Sens Appl Soc Environ 25:100675

    Google Scholar 

  • Dwivedi S (2023) Response of groundwater level to climate variability: a case study of Mirzapur, Uttar Pradesh, India. Environmental Processes and Management: Tools and Practices for Groundwater. Springer International Publishing, Cham, pp 347–359

    Chapter  Google Scholar 

  • Elusma M, Tung CP, Lee CC (2022) Agricultural drought risk assessment in the Caribbean region: the case of Haiti. Intl J Disaster Risk Reduct, 103414

  • Esit M, Yuce MI (2022) Copula-based bivariate drought severity and duration frequency analysis considering spatial-temporal variability in the Ceyhan Basin, Turkey

  • Gaznayee HAA, Al-Quraishi AMF, Mahdi K, Ritsema C (2022) A geospatial approach for analysis of drought impacts on vegetation cover and land surface temperature in the Kurdistan Region of Iraq. Water 14(6):927

    Article  Google Scholar 

  • Géant CB, Yannick M, Jean MM, Espoir BM, Adrien NB, Lucungu PB ... Schmitz S (2022) Gully erosion susceptibility map** using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo. Physics and Chemistry of the Earth, Parts A/B/C, 103295

  • Ghazali S, Zibaei M, Keshavarz M (2022) The effectiveness of livelihood management strategies in mitigating drought impacts and improving livability of pastoralist households. Intl J Disaster Risk Reduction, 103063

  • Ghorbanian A, Mohammadzadeh A, Jamali S (2022) Linear and non-linear vegetation trend analysis throughout Iran using two decades of MODIS NDVI imagery. Remote Sensing 14(15):3683

    Article  Google Scholar 

  • Ghosh A, Maiti R (2022) Application of SWAT, Random Forest and artificial neural network models for sediment yield estimation and prediction of gully erosion susceptible zones: study on Mayurakshi River Basin of Eastern India. Geocarto Int 37(25):9663–9687

    Article  Google Scholar 

  • Gona LS, Gumindoga W, Rwasoka DT, Owen RJS (2022) Impact of climate change on groundwater potential and recharge in the drought prone Runde catchment of Zimbabwe. Water Supply

  • Gond S, Gupta N, Dikshit PKS, Patel J (2023) Assessment of drought variability using SPEI under observed and projected climate scenarios over Uttar Pradesh, India. Phys Chem Earth, Parts a/b/c 131:103440

    Article  Google Scholar 

  • Gong Z, Zhu J, Li T, Huang D, Chen X, Zhang Q (2022) The features of regional flash droughts in four typical areas over China and the possible mechanisms. Sci Total Environ 827:154217

    Article  CAS  Google Scholar 

  • Gustafsson MT, Rodriguez-Morales JE, Dellmuth LM (2022) Private adaptation to climate risks: evidence from the world’s largest mining companies. Clim Risk Manag 35:100386

    Article  Google Scholar 

  • Hao Y, Baik J, Fred S, Choi M (2022) Comparative analysis of two drought indices in the calculation of drought recovery time and implications on drought assessment: East Africa’s Lake Victoria Basin. Stoch Env Res Risk Assess 36(7):1943–1958

    Article  Google Scholar 

  • Henao Casas JD, Fernández Escalante E, Ayuga F (2022) Alleviating drought and water scarcity in the Mediterranean region through managed aquifer recharge. Hydrogeol J 30(6):1685–1699

    Article  Google Scholar 

  • Hoque MZ, Haque ME, Islam MS (2022) Map** integrated vulnerability of coastal agricultural livelihood to climate change in Bangladesh: Implications for spatial adaptation planning. Phys Chem Earth, Parts a/b/c 125:103080

    Article  Google Scholar 

  • Hung CP, Schalge B, Baroni G, Vereecken H, Hendricks Franssen HJ (2022) Assimilation of groundwater level and soil moisture data in an integrated land surface‐subsurface model for Southwestern Germany. Water Resour Res, 58(6), e2021WR031549

  • Hussain SF, Hussain G, Rahman N (2022) Artificial neural network modelling and optimization of elastic and an-elastic spring back in polymer parts produced through ISF. Intl J Adv Manuf Technol 118(7):2163–2176

    Article  Google Scholar 

  • Ikram RMA, Ewees AA, Parmar KS, Yaseen ZM, Shahid S, Kisi O (2022) The viability of extended marine predators algorithm-based artificial neural networks for streamflow prediction. Appl Soft Comput 131:109739

    Article  Google Scholar 

  • Ilbahar E (2022) Drought vulnerability assessment based on IVIF AHP and IVIF WASPAS: a case study in Turkey. In Multi-Criteria Decision Analysis (pp. 107–121). CRC Press

  • Islam M, Tamanna S, Noman M, Siemens AR, Islam SM (2022) Climate change diplomacy, adaptation, and mitigation strategies in South Asian Countries: a critical review. India II: Climate Change Impacts, Mitigation and Adaptation in Develo** Countries, 1–32

  • Jalalzadeh Fard B, Puvvula J, Bell JE (2022) Evaluating changes in health risk from drought over the contiguous United States. Int J Environ Res Public Health 19(8):4628

    Article  Google Scholar 

  • Jamali AA, Kalkhajeh RG, Randhir TO, He S (2022) Modeling relationship between land surface temperature anomaly and environmental factors using GEE and Giovanni. J Environ Manage 302:113970

    Article  Google Scholar 

  • Javadinejad S, Dara R, Jafary F (2021) Analysis and prioritization the effective factors on increasing farmers resilience under climate change and drought. Agric Res 10:497–513

    Article  Google Scholar 

  • Kamali B, Jahanbakhshi F, Dogaru D, Dietrich J, Nendel C, AghaKouchak A (2022) Probabilistic modeling of crop-yield loss risk under drought: a spatial showcase for sub-Saharan Africa. Environ Res Lett 17(2):024028

    Article  Google Scholar 

  • Kant S, Manik SK, Ram R (2023) Study of Southwest Monsoon Rainfall over Uttar Pradesh during last two decades (2001–2020). Mausam 74(1):161–168

    Article  Google Scholar 

  • Karmaoui A, El Jaafari S, Chaachouay H, Hajji L (2022) The socio-ecological system of the pre-Sahara zone of Morocco: a conceptual framework to analyse the impact of drought and desertification. GeoJournal 87(6):4961–4974

    Article  Google Scholar 

  • Kasperson JX, Kasperson RE, Turner BL, Hsieh W, Schiller A (2022) Vulnerability to global environmental change. In The social contours of risk (pp. 245–285). Routledge

  • Kesavan A, Kaur H, Chaudhuri S (2022) Unpacking land degradation neutrality (LDN), an emerging paradigm to conserve land systems’ sustainability in the 21st century? Meta-analysis of challenges and opportunities. Nature Environ Pollut Technol Intl Quart Sci J 22(1):91–100

    Google Scholar 

  • Kinouchi T (2022) Multidecadal land water and groundwater drought evaluation in peninsular India. Remote Sensing 14(6):1486

    Article  Google Scholar 

  • Kpienbaareh D, Mohammed K, Luginaah I, Wang J, Bezner Kerr R, Lupafya E, Dakishoni L (2022) Estimating groundnut yield in smallholder agriculture systems using PlanetScope Data. Land 11(10):1752

    Article  Google Scholar 

  • Kumar H, Naim N, Ali D (2023) Geochemical survey and estimation of baseline concentrations of major and trace elements in stream water, Uttar Pradesh, India: implication for environmental studies. J Geol Soc India 99(5):723–732

    Article  CAS  Google Scholar 

  • Kumari M, Kumar D (2022) Dynamic drought risk assessment and analysis with multi-source drought indices and analytical hierarchy process. Intl J Environ Sci Technol, 1–18

  • Lee D, Zhang H (2022) The economic impact of disasters in Pacific island countries: estimation and application to economic planning. Climate and Development, 1–17

  • Levesque K, Hamann A (2022) Identifying Western North American tree populations vulnerable to drought under observed and projected climate change. Climate 10(8):114

    Article  Google Scholar 

  • Liao G, He P, Gao X, Lin Z, Huang C, Zhou W ... Deng L (2022) Land use optimization of rural production–living–ecological space at different scales based on the BP–ANN and CLUE–S models. Ecol Indicators, 137, 108710

  • Liu H, Xu C, Allen CD, Hartmann H, Wei X, Yakir D ... Yu P (2022) Nature‐based framework for sustainable afforestation in global drylands under changing climate. Global change biology, 28(7), 2202–2220

  • Ma L, Huang Q, Huang S, Liu D, Leng G, Wang L, Li P (2022) Propagation dynamics and causes of hydrological drought in response to meteorological drought at seasonal timescales. Hydrol Res 53(1):193–205

    Article  Google Scholar 

  • Malekloo A, Ozer E, AlHamaydeh M, Girolami M (2022) Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Struct Health Monit 21(4):1906–1955

    Article  Google Scholar 

  • Mallick J, Talukdar S, Alsubih M, Almesfer MK, Shahfahad Hang HT, Rahman A (2022) Integration of statistical models and ensemble machine learning algorithms (MLAs) for develo** the novel hybrid groundwater potentiality models: a case study of semi-arid watershed in Saudi Arabia. Geocarto International, 37(22), 6442-6473

  • Markovics D, Mayer MJ (2022) Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renew Sustain Energy Rev 161:112364

    Article  Google Scholar 

  • Mittal H, Al Alili A, Alhassan SM, Susantyoko RA (2022) Zeolites and superporous hydrogels-based hybrid composites as solid desiccants to capture water vapors from humid air. Microporous Mesoporous Mater 342:112116

    Article  CAS  Google Scholar 

  • Mylonas N, Spiliotis M, Papapdopoulos B (2022) Creating a bridge between probabilities and fuzzy sets and its impact on drought severity assessment. In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 29–40). Springer, Cham

  • Ndayiragije JM, Li F (2022) Effectiveness of drought indices in the assessment of different types of droughts, managing and mitigating their effects. Climate 10(9):125

    Article  Google Scholar 

  • Ngo NT, Pham AD, Truong TTH, Truong NS, Huynh NT, Pham TM (2022) An ensemble machine learning model for enhancing the prediction accuracy of energy consumption in buildings. Arab J Sci Eng 47(4):4105–4117

    Article  Google Scholar 

  • Ochieng P, Nyandega I, Wambua B (2022) Spatial-temporal analysis of historical and projected drought events over Isiolo County Kenya. Theor Appl Climatol 148(1):531–550

    Article  Google Scholar 

  • Omar LC, Mariano NC, Alberto G, Ernestina PG, Jorge MM, Enrique TD (2022) Sensitivity of four indices of meteorological drought for rainfed maize yield prediction in the State of Sinaloa. Mexico Agriculture 12(4):525

    Article  Google Scholar 

  • Oogathoo S, Houle D, Duchesne L, Kneeshaw D (2022) Tree transpiration well simulated by the Canadian Land Surface Scheme (CLASS) but not during drought. J Hydrol 604:127196

    Article  Google Scholar 

  • Orimoloye IR, Belle JA, Orimoloye YM, Olusola AO, Ololade OO (2022) Drought: a common environmental disaster. Atmosphere 13(1):111

    Article  Google Scholar 

  • Parvin F, Ali SA, Calka B, Bielecka E, Linh NT T, Pham QB (2022) Urban flood vulnerability assessment in a densely urbanized city using multi-factor analysis and machine learning algorithms. Theoretical and Applied Climatology, 1–21

  • Perri S, Molini A, Hedin LO, Porporato A (2022) Contrasting effects of aridity and seasonality on global salinization. Nat Geosci 15(5):375–381

    Article  CAS  Google Scholar 

  • Petersen-Perlman JD, Aguilar-Barajas I, Megdal SB (2022) Drought and groundwater management: interconnections, challenges, and policy responses. Curr Opin Environ Sci Health, 100364

  • Pham Quang M, Tallam K (2022) Predicting flood hazards in the Vietnam central region: an artificial neural network approach. Sustainability 14(19):11861

    Article  Google Scholar 

  • Pham, Q. B., Kumar, M., Di Nunno, F., Elbeltagi, A., Granata, F., Islam, A. R. M., ... & Anh, D. T. (2022). Groundwater level prediction using machine learning algorithms in a drought-prone area. Neural Computing and Applications, 1–23.

  • Praseeda PK, Sindhu G, Reghunath R (2022) Assessment of groundwater drought vulnerability and delineation of sites for artificial recharge–a case study. Intl J Hydrol Sci Technol 14(2):177–205

    Article  Google Scholar 

  • Prodhan, F. A., Zhang, J., Sharma, T. P. P., Nanzad, L., Zhang, D., Seka, A. M., ... & Mohana, H. P. (2022). Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach. Science of The Total Environment, 807, 151029.

  • Reddy, S. J. (2022). Part–I: drought index under rainfed family sector agriculture in develo** countries. Journal of Agricultural Research Pesticides and Biofertilizers, 3(4).

  • Reis, S. M., Marimon, B. S., Esquivel‐Muelbert, A., Marimon Jr, B. H., Morandi, P. S., Elias, F., ... & Phillips, O. L. (2022). Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology, 110(4), 876–888.

  • Ripple, W. J., Wolf, C., Gregg, J. W., Levin, K., Rockström, J., Newsome, T. M., ... & Lenton, T. M. (2022). World Scientists’ Warning of a Climate Emergency 2022.

  • Roy P, Pal SC, Chakrabortty R, Chowdhuri I, Saha A, Shit M (2022) Climate change and groundwater overdraft impacts on agricultural drought in India: vulnerability assessment, food security measures and policy recommendation. Sci Total Environ 849:157850

    Article  CAS  Google Scholar 

  • Russo MA, Carvalho D, Martins N, Monteiro A (2022) Forecasting the inevitable: a review on the impacts of climate change on renewable energy resources. Sustainable Energy Technol Assess 52:102283

    Article  Google Scholar 

  • Saha, A., Pal, S. C., Chowdhuri, I., Roy, P., Chakrabortty, R., & Shit, M. (2022). Vulnerability assessment of drought in India: insights from meteorological, hydrological, agricultural and socio-economic perspectives. Gondwana Research.

  • Saha S, Bhattacharjee S, Shit PK, Sengupta N, Bera B (2022b) Deforestation probability assessment using integrated machine learning algorithms of Eastern Himalayan foothills (India). Resour Conserv Recyc Adv 14:200077

    Google Scholar 

  • Saha, S., Gayen, A., & Bayen, B. (2022). Deep learning algorithms to develop Flood susceptibility map in data-scarce and ungauged River Basin in India. Stochastic Environmental Research and Risk Assessment, 1–16.

  • Saha S, Gayen A, Gogoi P, Kundu B, Paul GC, Pradhan B (2022d) Proposing novel ensemble approach of particle swarm optimized and machine learning algorithms for drought vulnerability map** in Jharkhand. India Geocarto International 37(25):8004–8035

    Article  Google Scholar 

  • Saha S, Kundu B, Saha A, Mukherjee K, Pradhan B (2023) Manifesting deep learning algorithms for develo** drought vulnerability index in monsoon climate dominant region of West Bengal India. Theoret Appl Climatol 151(1–2):891–913

    Article  Google Scholar 

  • Saha S, Saha A, Hembram TK, Kundu B, Sarkar R (2022) Novel ensemble of deep learning neural network and support vector machine for landslide susceptibility map** in Tehri region, Garhwal Himalaya. Geocarto International, 1–26

  • Saharuddin, K. D., Ariff, M. H. M., Bahiuddin, I., Ubaidillah, U., Mazlan, S. A., Aziz, S. A. A., ... & Shapiai, M. I. (2022). Non-parametric multiple inputs prediction model for magnetic field dependent complex modulus of magnetorheological elastomer. Scientific Reports, 12(1), 1–19.

  • Saharwardi MS, Kumar P, Dubey AK, Kumari A (2022) Understanding spatiotemporal variability of drought in recent decades and its drivers over identified homogeneous regions of India. Q J R Meteorol Soc 148(747):2955–2972

    Article  Google Scholar 

  • Santos CAG, Neto RMB, do Nascimento T. VM, da Silva RM, Mishra M, Frade TG (2021) Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Science of the Total Environment, 750, 141258

  • Savari M, Damaneh HE, Damaneh HE (2022) Drought vulnerability assessment: solution for risk alleviation and drought management among Iranian farmers. Intl J Disaster Risk Reduct 67:102654

    Article  Google Scholar 

  • Sein ZMM, Ullah I, Iyakaremye V, Azam K, Ma X, Syed S, Zhi X (2022) Observed spatiotemporal changes in air temperature, dew point temperature and relative humidity over Myanmar during 2001–2019. Meteorol Atmos Phys 134(1):1–17

    Article  Google Scholar 

  • Selamat SN, Majid NA, Taha MR, Osman A (2022) landslide susceptibility model using artificial neural network (ANN) approach in Langat River Basin, Selangor. Malaysia Land 11(6):833

    Google Scholar 

  • Senguptaa, A., & Thangavelb, M. Impact of climate change on sugarcane production in Uttar Pradesh, India: a district level study using statistical analysis and GIS map**.

  • Sharma A, Sharma D, Panda SK (2022) Assessment of spatiotemporal trend of precipitation indices and meteorological drought characteristics in the Mahi River basin India. Journal of Hydrology 605:127314

    Article  Google Scholar 

  • Shi K, Touge Y, Kazama S (2022) Defining homogeneous drought zones based on soil moisture across Japan and teleconnections with large-scale climate signals. J Appl Meteorol Climatol 61(1):43–60

    Article  Google Scholar 

  • Shnichal, B. S., Lahmood, F. F., & Amin, R. A. M. Use of analytical hierarchy process (AHP) and Palmer Drought Severity Index (PDSI) to detect drought patterns (Dhi Qar-Iraq) study case.

  • Simões S, Gonçalves AL, Jones TH, Sousa JP, Canhoto C (2022) Air temperature more than drought duration affects litter decomposition under flow intermittency. Sci Total Environ 829:154666

    Article  Google Scholar 

  • Singh, P., Kannaujiya, A. K., Deep, A., Singh, S., Mohanty, T., & Prakash, K. (2022). Spatio‐temporal drought susceptibility assessment of Ken River Basin, Central India, and its evaluation through river's morphometry. Geological Journal.

  • Soltani SRK, Mostafaeipour A, Almutairi K, Dehshiri SJH, Dehshiri SSH, Techato K (2022) Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: a case study. Sustain Energy Technol Assess 50:101849

    Google Scholar 

  • Song T, Li Y, Meng F, **e P, Xu D (2022) A novel deep learning model by Bigru with attention mechanism for tropical cyclone track prediction in the Northwest Pacific. J Appl Meteorol Climatol 61(1):3–12

    Article  Google Scholar 

  • Su F, Wu J, Wang D, Zhao H, Wang Y, He X (2022) Moisture movement, soil salt migration, and nitrogen transformation under different irrigation conditions: field experimental research. Chemosphere 300:134569

    Article  CAS  Google Scholar 

  • Tang Y, Huo J, Zhu D, Gao T, Jiang X (2022) Spatio-temporal variation of precipitation and evaporation on the Tibetan plateau and their influence on regional drought. Atmosphere 13(8):1323

    Article  Google Scholar 

  • Taylor S, Roald LA (2022) A framework for risk assessment and optimal line upgrade selection to mitigate wildfire risk. Electric Power Syst Res 213:108592

    Article  Google Scholar 

  • Tijerín-Triviño J, Moreno-Fernández D, Zavala MA, Astigarraga J, García M (2022) Identifying forest structural types along an aridity gradient in peninsular Spain: integrating low-density LiDAR, forest inventory, and aridity index. Remote Sensing 14(1):235

    Article  Google Scholar 

  • Tomar, D. S., & Singh, I. (2022). On-farm water harvesting: promising intervention towards crop diversification and doubling farmers income in drought prone central province of India. In Innovative Approaches for Sustainable Development (pp. 107–118). Springer, Cham.

  • Trivedi, S. (2022). Improving students’ retention using machine learning: impacts and implications. ScienceOpen Preprints.

  • Trnka, M., Vizina, A., Hanel, M., Balek, J., Fischer, M., Hlavinka, P., ... & Brázdil, R. (2022). Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions. Agricultural Water Management, 264, 107460.

  • Ullah, I., Ma, X., Ren, G., Yin, J., Iyakaremye, V., Syed, S., ... & Singh, V. P. (2022). Recent changes in drought events over South Asia and their possible linkages with climatic and dynamic factors. Remote Sensing, 14(13), 3219.

  • Varikoden, H., & Reji, M. J. K. (2022). Features of regional Indian monsoon rainfall extremes. In Climate Impacts on Extreme Weather (pp. 83–100). Elsevier.

  • Wang, H., Cao, L., Li, X., Feng, R., & Zheng, P. (2022). Differences in drought evolution as portrayed for China using various evapotranspiration models and drought indices. International Journal of Climatology.

  • Wang Y, Wang S, Zhao W, Liu Y (2022b) The increasing contribution of potential evapotranspiration to severe droughts in the Yellow River basin. J Hydrol 605:127310

    Article  Google Scholar 

  • Winzeler HE, Owens PR, Read QD, Libohova Z, Ashworth A, Sauer T (2022) Topographic wetness index as a proxy for soil moisture in a Hillslope Catena: flow algorithms and map generalization. Land 11(11):2018

    Article  Google Scholar 

  • Xue, J., Wang, Y., Teng, H., Wang, N., Li, D., Peng, J., ... & Shi, Z. (2021). Dynamics of vegetation greenness and its response to climate change in **njiang over the past two decades. Remote Sensing, 13(20), 4063.

  • Youssef, A. M., Pourghasemi, H. R., & El-Haddad, B. A. (2022). Advanced machine learning algorithms for flood susceptibility modeling—performance comparison: Red Sea, Egypt. Environmental Science and Pollution Research, 1–25.

  • Zeri, M., Williams, K., Cunha, A. P. M., Cunha‐Zeri, G., Vianna, M. S., Blyth, E. M., ... & Galdos, M. V. (2022). Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing. Climate Resilience and Sustainability, 1(1), e7.

  • Zhang P, Yin ZY, ** YF, Liu XF (2022) Modelling the mechanical behaviour of soils using machine learning algorithms with explicit formulations. Acta Geotech 17(4):1403–1422

    Article  Google Scholar 

  • Zikargae MH, Woldearegay AG, Skjerdal T (2022) Environmental conflicts as key factors influencing participatory environmental communication and sustainable development of a rural society. Conflict Resolution Quarterly 39(4):383–401

    Article  Google Scholar 

  • Zúñiga F, Jaime M, Salazar C (2021) Crop farming adaptation to droughts in small-scale dryland agriculture in Chile. Water Resour Econ 34:100176

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Institute of Eminence, Banaras Hindu University, for their invaluable support through the “Trans Disciplinary Research” Grant (No. R/Dev/IoE/TDR-Projects/2023-24/ 61658) that made this research possible by providing us the structure and laboratory.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Barnali Kundu, Sonali Kundu, and Narendra Kumar Rana. The first draft of the manuscript was written by Barnali Kundu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sonali Kundu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the co-authors agreed to publish the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, B., Rana, N.K. & Kundu, S. Enhancing drought resilience: machine learning–based vulnerability assessment in Uttar Pradesh, India. Environ Sci Pollut Res 31, 43005–43022 (2024). https://doi.org/10.1007/s11356-024-33776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-33776-y

Keywords

Navigation