Log in

Enhancing systematic tolerance in Bermuda grass (Cynodon dactylon L.) through amplified alkB gene expression and bacterial-driven hydrocarbon degradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to access the impact of soil polluted with petroleum (5, 10 g petroleum kg−1 soil) on Bermuda grass (Cynodon dactylon L.) with and without applied bacterial inoculants (Arthrobacter oxydans ITRH49 and Pseudomonas sp. MixRI75). Both soil and seed were given bacterial inoculation. The evaluated morphological parameters of Bermuda grass were fresh and dry weight. The results demonstrated that applied bacterial inoculants enhanced 5.4%, 20%, 28% and 6.4%, 21%, and 29% shoot and root fresh/dry weights in Bermuda grass under controlled environment. The biochemical analysis of shoot and root was affected deleteriously by the 10 g petroleum kg−1 soil pollution. Microbial inoculants enhanced the activities of enzymatic (catalase, peroxidase, glutathione reductase, ascorbate peroxidase, superoxide dismutase) and non-enzymatic (ɑ-tocopherols, proline, reduced glutathione, ascorbic acid) antioxidant to mitigate the toxic effects of ROS (H2O2) under hydrocarbon stressed condition. The maximum hydrocarbon degradation (75%) was recorded by Bermuda grass at 5 g petroleum kg−1 soil contamination. Moreover, bacterial persistence and alkane hydroxylase gene (alkB) abundance and expression were observed more in the root interior than in the rhizosphere and shoot interior of Bermuda grass. Subsequently, the microbe used a biological tool to propose that the application of plant growth-promoting bacteria would be the most favorable choice in petroleum hydrocarbon polluted soil to conquer the abiotic stress in plants and the effective removal of polyaromatic hydrocarbons in polluted soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available when required.

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14:35–47

    Article  PubMed  Google Scholar 

  • Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM (2013) Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int Biodeterior Biodegrad 85:331–336

    Article  CAS  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  ADS  PubMed  CAS  Google Scholar 

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–703

    Article  ADS  PubMed  Google Scholar 

  • Ahammed GJ, Yuan H-L, Ogweno JO, Zhou Y-H, **a X-J, Mao W-H, Shi K, Yu J-Q (2012) Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 86:546–555

    Article  ADS  PubMed  CAS  Google Scholar 

  • Ahmad F, Iqbal S, Anwar S, Afzal M, Islam E, Mustafa T, Khan QM (2012) Enhanced remediation of chlorpyrifos from soil using ryegrass (Lolliummultiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. J Hazard Mater 237:110–115

    Article  PubMed  Google Scholar 

  • Akhter MS, Noreen S, Ummara U, Aqeel M, Saleem N, Ahmed MM, Mahmood S, Athar H-U-R, Alyemeni MN, Kaushik P, Ahmad P (2022) Silicon-induced mitigation of NaCl stress in barley (Hordeum vulgare L.), associated with enhanced enzymatic and non-enzymatic antioxidant activities. Plants 11:2379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, Zhou W (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crops Prod 52:617–626

    Article  CAS  Google Scholar 

  • Ali S, Glick BR (2019) Plant–bacterial interactions in management of plant growth under abiotic stresses. New Future Dev Microb Biotechnol Bioeng. In: Singh JS (ed) Elsevier: Amsterdam, The Netherlands, pp 21–45

  • Arslan M, Afzal M, Amin I, Iqbal S, Khan QM (2014) Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil. PLoS One 9:e111208

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Balseiro-Romero M, Gkorezis P, Kidd PS, Van Hamme J, Weyens N, Monterroso C, Vangronsveld J (2017) Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinusluteus development for potential application in phytoremediation. Sci Total Environ 581:676–688

    Article  ADS  PubMed  Google Scholar 

  • Baker H, Frank O, DeAngelis B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 21:531–536

  • Bashandy SR, Abd-Alla MH, Dawood MF (2020) Alleviation of the toxicity of oily wastewater to canola plants by the N2-fixing, aromatic hydrocarbon biodegrading bacterium Stenotrophomonas maltophilia-SR1. Appl Soil Ecol 154:103654

    Article  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Cela J, Tweed JK, Sivakumaran A, Lee MR, Mur LA, Munné-Bosch S (2018) An altered tocopherol composition in chloroplasts reduces plant resistance to Botrytis cinerea. Plant Physiol Biochem 127:200–210

    Article  PubMed  CAS  Google Scholar 

  • Choudhury AR, Trivedi P, Madhaiyan M, Choi J, Choi W, Park J-H, Walitang DI, Sa T (2023) ACC deaminase producing endophytic bacteria enhances cell viability of rice (Oryza sativa L.) under salt stress by regulating ethylene emission pathway. Environ Exp Bot 213:105411

  • Cui X, Cao X, Xue W, Xu L, Cui Z, Zhao R, Ni S-Q (2023) Integrative effects of microbial inoculation and amendments on improved crop safety in industrial soils co-contaminated with organic and inorganic pollutants. Sci Total Environ 873:162202

    Article  ADS  PubMed  CAS  Google Scholar 

  • Fahad S, Sonmez O, Saud S, Wang D, Wu C, Adnan M, Turan V (2021) Plant growth regulators for climate-smart agriculture. CRC Press

    Book  Google Scholar 

  • Fatima K, Imran A, Amin I, Khan Q, Afzal M (2016) Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ Sci Pollut Res 23:6188–6196

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer

    Book  Google Scholar 

  • Guan C, Fu W, Zhang X, Li Z, Zhu Y, Chen F, Ji J, Wang G, Gao X (2023) Enhanced phytoremediation efficiency of PHE-contaminated soil by rape (Brassica napus L.) assisted with PHE-degradable PGPR through modulating rhizobacterial communities. Ind Crops Prod 202:117057

    Article  CAS  Google Scholar 

  • Guarino C, Marziano M, Tartaglia M, Prigioniero A, Postiglione A, Scarano P, Sciarrillo R (2020) Poaceae with PGPR bacteria and arbuscular mycorrhizae partnerships as a model system for plant microbiome manipulation for phytoremediation of petroleum hydrocarbons contaminated agricultural soils. Agronomy 10:547

    Article  CAS  Google Scholar 

  • Guo J (2006) Laboratory manual of plant physiology. Higher Education Press, Bei**g, pp 210–228

  • Guo S, Liu X, Tang J (2022) Enhanced degradation of petroleum hydrocarbons by immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas emission in saline-alkali soil. Chemosphere 286:131663

    Article  PubMed  CAS  Google Scholar 

  • Hoang SA, Sarkar B, Seshadri B, Lamb D, Wijesekara H, Vithanage M, Liyanage C, Kolivabandara PA, Rinklebe J, Lam SS (2021) Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: a review. J Hazard Mater 416:125702

  • Igamberdiev AU, Seregelyes C, Manac N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    Article  PubMed  CAS  Google Scholar 

  • Ijaz A, Imran A, ulHaq MA, Khan QM, Afzal M (2016) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405:179–195

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  PubMed  CAS  Google Scholar 

  • Kapoor D, Singh MP, Kaur S, Bhardwaj R, Zheng B, Sharma A (2019) Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea L. Plants 8:260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  ADS  PubMed  CAS  Google Scholar 

  • Khan MAI, Biswas B, Smith E, Naidu R, Megharaj M (2018) Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil-a review. Chemosphere 212:755–767

    Article  ADS  PubMed  CAS  Google Scholar 

  • Krzyszczak A, Dybowski M, Jośko I, Kusiak M, Sikora M, Czech B (2022) The antioxidant defense responses of Hordeum vulgare L. to polycyclic aromatic hydrocarbons and their derivatives in biochar-amended soil. Environ Pollut 294:118664

    Article  PubMed  CAS  Google Scholar 

  • Lacalle RG, Gómez-Sagasti MT, Artetxe U, Garbisu C, Becerril JM (2018) Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Sci Total Environ 618:347–356

    Article  ADS  PubMed  CAS  Google Scholar 

  • Li X, Peng D, Zhang Y, Ju D, Guan C (2021) Achromobacter sp. PHED2 enhances the phenanthrene degradation and stress tolerance in maize involving the participation of salicylic acid. Environ Technol Innov 21:101365

    Article  CAS  Google Scholar 

  • Li X, Ren Q, Liao C, Wang Q, Ren M, Zhang M, Qian X, Yang S, Hu H, Wang M (2023) Plant-microbe interactions in wheat to deal with abiotic stress. Abiotic Stresses Wheat. Mohd. In: Kamran Khan et al (ed) Academic Press: 125 London Wall, London EC2Y 5AS, United Kingdom, pp 375–391

  • Malicka M, Magurno F, Posta K, Chmura D, Piotrowska-Seget Z (2021) Differences in the effects of single and mixed species of AMF on the growth and oxidative stress defense in Loliumperenne exposed to hydrocarbons. Ecotoxicol Environ Saf 217:112252

    Article  PubMed  CAS  Google Scholar 

  • Maurya A, Sharma D, Partap M, Kumar R, Bhargava B (2023) Microbially-assisted phytoremediation toward air pollutants: current trends and future directions. Environ Technol Innov 31:103140

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao R, Guo M, Zhao X, Gong Z, Jia C, Li X, Zhuang J (2020) Response of soil bacterial communities to polycyclic aromatic hydrocarbons during the phyto-microbial remediation of a contaminated soil. Chemosphere 261:127779

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Galván AE, Cortés-Patiño S, Romero-Perdomo F, Uribe-Vélez D, Bashan Y, Bonilla RR (2020) Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. App Soil Eco 147:103367

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Navarro-Torre S, Rodríguez-Llorente ID, Pajuelo E, Mateos-Naranjo E, Redondo-Gómez S, Mesa-Marín J (2023) Role of bacterial endophytes in plant stress tolerance: current research and future outlook. Microb Endophy Plant Growth. In: Solanki MK et al (eds) Academic Press: 125 London Wall, London EC2Y 5AS, United Kingdom, pp 35–49

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Lelarge-Trouverie C, Mhamdi A (2015) The metabolomics of oxidative stress. Phytochemistry 112:33–53

    Article  PubMed  CAS  Google Scholar 

  • Pandita D (2022) Reactive oxygen and nitrogen species: antioxidant defense studies in plants. In: Aftab, Roychoudhury (eds) Plant Perspectives to Global Climate Changes, Academic Press: 125 London Wall, London EC2Y 5AS, United Kingdom, pp 355–371

  • Ratnaningsih HR, Noviana Z, Dewi TK, Loekito S, Wiyono S, Gafur A, Antonius S (2023) IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon 9(6): e16306

  • Rehman A, Khalil SK (2018) Effect of exogenous application of salicylic acid, potassium nitrate and methanol on canola growth and phenology under different moisture regimes. Sarhad J Agri 34:781–789

    Google Scholar 

  • Saeed M, Ilyas N, Bibi F, Jayachandran K, Dattamudi S, Govarthanan M (2021) Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. Environ Pollut 292:118343

  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci 51:121–124

    Google Scholar 

  • Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticumaestivum L.). PloS one 11:e0155026

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Mishra S, Jha P, Raghuvanshi S, Jha PN (2018) Effect of inoculation of zinc-resistant bacterium Enterobacter ludwigii CDP-14 on growth, biochemical parameters and zinc uptake in wheat (Triticumaestivum L.) plant. Ecol Eng 116:163–173

    Article  Google Scholar 

  • Singha LP, Pandey P (2017) Glutathione and glutathione-S-transferase activity in Jatropha curcas in association with pyrene degrader Pseudomonas aeruginosa PDB1 in rhizosphere, for alleviation of stress induced by polyaromatic hydrocarbon for effective rhizoremediation. Ecol Eng 102:422–432

    Article  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci. 170:274–282

  • Song X, Li C, Chen W (2022) Phytoremediation potential of Bermuda grass (Cynodondactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. Ecotoxicol Environ Saf 234:113389

    Article  PubMed  CAS  Google Scholar 

  • Speight JG (2011) Chapter 12–Petrochemicals. In: Speight JG (ed) Handbook of Industrial Hydrocarbon Processes. Gulf Professional Publishing, Boston, pp 429–466

  • Sun J-L, Zeng H, Ni H-G (2013) Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere 90:1751–1759

    Article  ADS  PubMed  CAS  Google Scholar 

  • Sun L, Zhu G, Liao X (2018) Enhanced arsenic uptake and polycyclic aromatic hydrocarbon (PAH)-dissipation using Pterisvittata L. and a PAH-degrading bacterium. Sci Total Environ 624:683–690

    Article  ADS  PubMed  CAS  Google Scholar 

  • Tariq M, Shah AA, Yasin NA, Ahmad A, Rizwan M (2021) Enhanced performance of Bacillus megaterium OSR-3 in combination with putrescine ameliorated hydrocarbon stress in Nicotiana tabacum. Int J Phytoremediation 23:119–129

    Article  PubMed  CAS  Google Scholar 

  • Ummara U, Noreen S, Afzal M, Ahmad P (2021) Bacterial bioaugmentation enhances hydrocarbon degradation, plant colonization and gene expression in diesel-contaminated soil. Physiol Plant 173:58–66

    PubMed  CAS  Google Scholar 

  • Ummara U, Noreen S, Afzal M, Zafar ZU, Akhter MS, Iqbal S, Hefft DI, Kazi M, Ahmad P (2022) Induced systemic tolerance mediated by plant-microbe interaction in maize (Zea mays L.) plants under hydrocarbon contamination. Chemosphere 290:133327

    Article  PubMed  CAS  Google Scholar 

  • Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Yan Y, Wang Y, Mao Q, Fu Y, Peng X, Yang Z, Ren J, Liu A, Chen S (2021) Arbuscular mycorrhizal fungi for vegetable (VT) enhance resistance to Rhizoctoniasolani in watermelon by alleviating oxidative stress. Biol Control 152:104433

    Article  CAS  Google Scholar 

  • Xun F, **e B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608

    Article  CAS  Google Scholar 

  • Yousaf S, Ripka K, Reichenauer T, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109:1389–1401

    Article  PubMed  CAS  Google Scholar 

  • Yousaf U, Khan AHA, Farooqi A, Muhammad YS, Barros R, Tamayo-Ramos JA, Iqbal M, Yousaf S (2022) Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil. Chemosphere 286:131782

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhang F, Raziuddin R, Gong H, Yang Z, Lu L, Ye Q, Zhou W (2008) Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. J Plant Growth Regul 27:159–169

    Article  Google Scholar 

  • Zhou W, Leul M (1999) Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul 27:99–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the deanship of scientific research at King Khalid University for supporting this work under the grant number (R.G.P2/326/44).

Funding

Princess Nourah bint Abdulrahman University Researchers Supporting Project No. (PNURSP2024R101), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. 

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Abdul Wahid, Sibgha Noreen, Ume Ummara; data curation: Sehrish Iqbal, Shazia Jabeen; formal analysis: Muhammad Salim Akhter, Nargis Naz; investigation: Farrukh Jaleel; methodology: Muhammad Aqeel, Sehrish Iqbal, Shazia Jabeen; project administration: Abdul Wahid, Ume Ummara, Muhammad Aqeel; software: Muhammad Aqeel, Muhammad Salim Akhter, Modhi O. Alotaibi; supervision: Abdul Wahid, Sibgha Noreen; visualization: Muhammad Salim Akhter, Sehrish Iqbal; writing—original draft: Muhammad Salim Akhter, Sehrish Iqbal; writing—review and editing: Mudawi M. Nour, Rahmah N. Al-Qthanin, Muhammad Salim Akhter, Muhammad Aqeel; funding acquisition: Modhi O. Alotaibi, Rahmah N. Al-Qthanin. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Muhammad Aqeel.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S., Ummara, U., Noreen, S. et al. Enhancing systematic tolerance in Bermuda grass (Cynodon dactylon L.) through amplified alkB gene expression and bacterial-driven hydrocarbon degradation. Environ Sci Pollut Res 31, 19871–19885 (2024). https://doi.org/10.1007/s11356-024-32326-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32326-w

Keywords

Navigation