Log in

Chemical composition and toxicity of commercial Mentha spicata and Eucalyptus citriodora essential oils on Culex quinquefasciatus and non-target insects

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Current vector control strategies based on synthetic chemicals are not eco-friendly against non-target organisms; hence, alternative approaches are highly required. Commercially purchased oil of Mentha spicata (Spearmint) and Eucalyptus citriodora (Citriodora) were examined against the medical pest Cx. quinquefasciatus (Say) and their non-toxicity on the aquatic species was evaluated. Chemical screening with gas chromatography coupled with mass spectrometry (GC–MS) analysis revealed a total of 14 and 11 compounds in Citriodora and Spearmint oils, respectively, with the highest peak (%) at carvone (70.44%) and isopulegol (30.4%). The larvicidal activity on the fourth instar larvae of Cx. quinquefasciatus showed dose-dependent mortality and significance at a 100 ppm concentration 48 h post-treatment with Citriodora (76.4%, P ≤ 0.001) and Spearmint (100%, P ≤ 0.001). Additionally, the photomicrograph of the fourth instar larvae revealed significant physical abnormalities in the head and midgut tissues post-exposure to Spearmint and Citriodora oils. Moreover, the histological assay revealed severe damage in the epithelial cells and gut lumen 2 to 24 h post-treatment. The repellency percentage of adult Culex mosquitoes was prominent across both oils at 150 ppm 210 min post-exposure. Non-target toxicity on the aquatic predator showed both essential oils (Spearmint oil (17.2%) and Citriodora oil (15.2%)) are safer at the maximum treatment (200 ppm) compared to temephos (75.4% at 1 ppm). The in silico screening of phyto-compounds derived by both essential oils with BeeTox (online server) showed no contact toxicity to the honey bee Apis mellifera. Overall, the present research revealed that Spearmint and Citriodora essential oils and their active phyto-compounds were toxic to Cx. quinquefasciatus and harmless to the aquatic predator and honey bee.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are available within the manuscript. Also, all materials used in this research were cited in this work.

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–267

    Article  CAS  Google Scholar 

  • Agathokleous E, Blande JD, Calabrese EJ, Guedes RNC, Benelli G (2023a) Stimulation of insect vectors of pathogens by sublethal environmental contaminants: a hidden threat to human and environmental health? Environ Pollut 336:122422

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Blande JD, Masui N, Calabrese EJ, Zhang J, Sicard P, Guedes RN, Benelli G (2023b) Sublethal chemical stimulation of arthropod parasitoids and parasites of agricultural and environmental importance. Environ Res 237:116876

    Article  CAS  PubMed  Google Scholar 

  • Amri I, Khammassi M, Ben Ayed R, Khedhri S, Mansour MB, Kochti O, Pieracci Y, Flamini G, Mabrouk Y, Gargouri S, Hanana M (2023) Essential oils and biological activities of Eucalyptus falcata, E. sideroxylon and E. citriodora growing in Tunisia. Plants 12(4):816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz AT, Panneerselvam C, Edward-Sam E (2023) Toxicity of plants as insecticides against human pathogenic mosquito vectors of Saudi Arabian strains-a review. Entomol Res 53:323–332

    Article  CAS  Google Scholar 

  • Benelli G (2019) Managing mosquitoes and ticks in a rapidly changing world–facts and trends. Saudi J Biol Sci 26(5):921–929

    Article  PubMed  Google Scholar 

  • Benelli G, Cornara D (2021) Arthropod vectors and vector-borne pathogens: know your enemy for not succumbing the battle. Entomol Gen 41(5):415–418

    Article  Google Scholar 

  • Benelli G, Senthil-Nathan S (2019) Together in the fight against arthropod-borne diseases: a one health perspective. Int J Environ Res Public Health 16(23):4876

    Article  PubMed  PubMed Central  Google Scholar 

  • Benelli G, Pavela R, Petrelli R, Cappellacci L, Canale A, Senthil-Nathan S, Maggi F (2018a) Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind Crops Prod 124:236–243

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Giordani C, Casettari L, Curzi G, Cappellacci L, Petrelli R, Maggi F (2018b) Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind Crops Prod 112:668–680

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Zorzetto C, Sánchez-Mateo CC, Santini G, Canale A, Maggi F (2019) Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol Gen 39(1):1–9

    Google Scholar 

  • Benelli G, Pavela R, Rakotosaona R, Nzekoue FK, Canale A, Nicoletti M, Maggi F (2020a) Insecticidal and mosquito repellent efficacy of the essential oils from stem bark and wood of Hazomalania voyronii. J Ethnopharmacol 248:112333

    Article  CAS  PubMed  Google Scholar 

  • Benelli G, Petrelli R, Canale A (2020b) Arthropod-borne disease control at a glance: what’s new on drug development? Molecules 25(21):5175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullangpoti V, Mujchariyakul W, Laksanavilat N, Junhirun P (2018) Acute toxicity of essential oil compounds (thy-mol and 1, 8-cineole) to insectivorous guppy, Poecilia reticulata Peters, 1859. Agri Nat Res 52(2):190–194

    Google Scholar 

  • Chaiphongpachara T, Laojun S, Wassanasompong W (2020) Screening seven commercial essential herb oils for larvicidal activity against the mosquito Aedes aegypti (Linnaeus), a vector of the dengue virus. J Appl Pharm Sci 10(7):043–050

    CAS  Google Scholar 

  • Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, Kalaivani K, Senthil-Nathan S, Benelli G (2018a) Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environ Sci Pollut Res 25:10294–10306

    Article  CAS  Google Scholar 

  • Chellappandian M, Vasantha-Srinivasan P, Senthil-Nathan S, Karthi S, Thanigaivel A, Ponsankar A, Kalaivani K, Hunter WB (2018b) Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ Intern 113:214–230

    Article  CAS  Google Scholar 

  • Chellappandian M, Senthil-Nathan S, Vasantha-Srinivasan P, Karthi S, Thanigaivel A, Kalaivani K, Sivanesh H, Stanley-Raja V, Chanthini KM, Shyam-Sundar N (2019) Target and non-target botanical pesticides effect of Trichodesma indicum (Linn) R. Br. and their chemical derivatives against the dengue vector, Aedes aegypti L. Environ Sci Pollut Res 26:16303–16315

    Article  CAS  Google Scholar 

  • Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Biores Technol 89(1):99–102

    Article  CAS  Google Scholar 

  • Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agri Food Chem 52(14):4395–4400

    Article  CAS  Google Scholar 

  • de Araujo Moysés D, dos Santos Martins HP, Ribeiro MS, da Rocha Galucio NC, de Souza RR, dos Santos Correa RM, de Arimateia Rodrigues do Rego J, Dolabela MF, Vale VV (2023) Mentha sp. essential oil and its applicability in Brazil. In: Essential oils: extraction methods and applications, vol 14, pp 125–155

  • de Morais SM, Facundo VA, Bertini LM, Cavalcanti ESB, dos Anjos Júnior JF, Ferreira SA, de Brito ES, de Souza Neto MA (2007) Chemical composition and larvicidal activity of essential oils from Piper species. Biochem Syst Ecol 35(10):670–675

    Article  Google Scholar 

  • Dubey N, Shukla R, Kumar A, Singh P, Prakash B (2010) Global scenario on the application of natural products in integrated pest management programmes. In: Natural products in plant pest management, pp 1–20. https://doi.org/10.1079/9781845936716.0001

  • Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol c: Toxicol Pharmacol 130:325–337

    CAS  PubMed  Google Scholar 

  • Fillinger U, Lindsay SW (2011) Larval source management for malaria control in Africa: myths and reality. Malaria J 10(1):1–10

    Article  Google Scholar 

  • Finney DJ (1971) Statistical logic in the monitoring of reactions to therapeutic drugs. Method Info Med 10(04):237–245

    Article  CAS  Google Scholar 

  • Giunti G, Becker N, Benelli G (2023) Invasive mosquito vectors in Europe: from bioecology to surveillance and management. Acta Trop 239:106832

  • Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitology Res 110:2023–2032

    Article  CAS  Google Scholar 

  • Haddi K, Nauen R, Benelli G, Guedes RNC (2023) Global perspectives on insecticide resistance in agriculture and public health. Entomol Gen 43:495–500

    Article  Google Scholar 

  • Hafez AM (2023) First comprehensive report of the resistance of Culex quinquefasciatus Say (Diptera: Culicidae) to commonly used insecticides in Riyadh, Saudi Arabia. Heliyon 9(1):e12709

    Article  CAS  PubMed  Google Scholar 

  • Hudz N, Kobylinska L, Pokajewicz K, Horčinová Sedláčková V, Fedin R, Voloshyn M, Myskiv I, Brindza J, Wieczorek PP, Lipok J (2023) Mentha piperita: essential oil and extracts, their biological activities, and perspectives on the development of new medicinal and cosmetic products. Molecules 28(21):7444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthi S, Vasantha-Srinivasan P, Ganesan R, Ramasamy V, Senthil-Nathan S, Khater HF, Radhakrishnan N, Amala K, Kim TJ, El-Sheikh MA, Krutmuang P (2020) Target activity of Isaria tenuipes (Hypocreales: Clavicipitaceae) fungal strains against dengue vector Aedes aegypti (Linn.) and its non-target activity against aquatic predators. J Fungi 29:196

    Article  Google Scholar 

  • Kalvikkarasan K, Muthusamy J, Prabhakaran VS, Pandiyan R, Narayanaswamy R, Muthu K, Sengodan K, Raja G, Sengottayan SN, Selvaraj GK, Rajakrishnan R (2023) In-vitro and in-silico analysis of methanolic crude extracts of Mountain knotgrass Aerva lanta (L.) against two lepidopteran pests and non-target species. Toxin Rev 21:1–16

    Google Scholar 

  • Khanavi M, Norouzi M, Tabatabaee H, Noudeh AS, Safavi SB, Shafiee A (2010) Chemical compositions and antiviral effects of the essential oil of Zataria multiflora Boiss. and Origaunum majorana L. J Med Plants 9:128–137

    Google Scholar 

  • Khedhri S, Marwa K, Boukhris Bouhachem S, Pieracci Y, Flamini G, Gargouri S, Amri I Hamrouni L (2023) Tunisian Eucalyptus essential oils: exploring their potential for biological applications. Plant Biosyst- Int J Deal Aspects Plant Biol 1–26. https://doi.org/10.1080/11263504.2023.2287531

  • Kweka EJ, Lima TC, Marciale CM, de Sousa DP (2016) Larvicidal efficacy of monoterpenes against the larvae of Anopheles gambiae. Asian Pac J Trop Biomed 6(4):290–294

    Article  CAS  Google Scholar 

  • Maggi F, Benelli G (2018) Essential oils from aromatic and medicinal plants as effective weapons against mosquito vectors of public health importance. In: Benelli G, Mehlhorn H (eds) Mosquito-borne diseases. Parasitology research monographs, vol 10. Springer, Cham, pp 69–129. https://doi.org/10.1007/978-3-319-94075-5_6

  • Malavige GN, Sjö P, Singh K, Piedagnel JM, Mowbray C, Estani S, Lim SCL, Siquierra AM, Ogg GS, Fraisse L, Ribeiro I (2023) Facing the escalating burden of dengue: challenges and perspectives. PLOS Glob Public Health 3(12):e0002598

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzara E, Spinozzi E, Maggi F, Petrelli R, Fiorini D, Scortichini S, Perinelli DR, Bonacucina G, Ricciardi R, Pavela R, Benelli G (2023) Hemp (Cannabis sativa cv. Kompolti) essential oil and its nanoemulsion: prospects for insecticide development and impact on non-target microcrustaceans. Ind Crops Prod 203:117161

    Article  CAS  Google Scholar 

  • Moemenbellah-Fard MD, Abdollahi A, Ghanbariasad A, Osanloo M (2020) Antibacterial and leishmanicidal activities of Syzygium aromaticum essential oil versus its major ingredient. Eugenol Flav Frag J 35(5):534–540

    Article  CAS  Google Scholar 

  • Moola AK, Ayyadurai T, Balasubramani S, Vignesh R, Mohan PK, Sathish S, Diana RKB (2023) Chemical com-position and larvicidal activity against Aedes aegypti larvae from Hyptis suaveolens (L.) Poit essential oil. J Nat Pest Res 3:100018

    Google Scholar 

  • Moreira-Filho JT, Braga RC, Lemos JM, Alves VM, Borba JV, Costa WS, Kleinstreuer N, Muratov EN, Andrade CH, Neves BJ (2021) BeeTox AI: an artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees. Artif Intel Life Sci 1:100013

    CAS  Google Scholar 

  • Nasir S, Batool M, Hussain SM, Nasir I, Hafeez F, Debboun M (2015) Bioactivity of oils from medicinal plants against immature stages of dengue mosquito Aedes aegypti (Diptera: Culicidae). Inter J Agri Biol 17(4):843–847

    CAS  Google Scholar 

  • Noorpisheh Ghadimi S, Abedini MR, Sarkari B, Savardashtaki A, Mikaeili F (2020) Neobalantidium coli: first molecular identification from the Eurasian wild boar, Susscrofa in Bushehr province, southwestern Iran. Vet Med Sci 6(1):142–146

    Article  CAS  PubMed  Google Scholar 

  • Osanloo M, Amani A, Sereshti H, Abai MR, Esmaeili F, Sedaghat MM (2017) Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind Crops Prod 109:214–219

    Article  CAS  Google Scholar 

  • Osanloo M, Sereshti H, Sedaghat MM, Amani A (2018) Nano-emulsion of Dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res 25:6466–6473

    Article  CAS  Google Scholar 

  • Osanloo M, Arish J, Sereshti H (2020) Developed methods for the preparation of electro spun nanofibers containing plant-derived oil or essential oil: a systematic review. Polym Bull 77:6085–6104

    Article  CAS  Google Scholar 

  • Paton RS, Kamau A, Akech S, Agweyu A, Ogero M, Mwandawiro C, Mturi N, Mohammed S, Mpimbaza A, Kariuki S, Otieno NA (2021) Malaria infection and severe disease risks in Africa. Science 373(6557):926–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick ML, Aimanova K, Sanders HR, Gill SS (2006) P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J Exp Biol 209:4638–4651

    Article  CAS  PubMed  Google Scholar 

  • Pavela R (2009) Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind Crops Prod 30(2):311–315

    Article  CAS  Google Scholar 

  • Pavela R (2013) Efficacy of naphthoquinones as insecticides against the house fly, Musca domestica L. Ind Crops Prod 43:745–750

    Article  CAS  Google Scholar 

  • Pavela R (2014) Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia-Pacif Entomol 17:287–293

    Article  CAS  Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors–a review. Exper Parasitol 167:103–108

    Article  Google Scholar 

  • Pavela R, Vrchotová N, Tříska J (2009) Mosquitocidal activities of thyme oils (Thymus vulgaris L.) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 105:1365–1370

    Article  PubMed  Google Scholar 

  • Pavela R, Benelli G, Petrelli R, Cappellacci L, Lupidi G, Sut S, Dall’Acqua S, Maggi F (2019) Exploring the insecticidal potential of boldo (Peumus boldus) essential oil: toxicity to pests and vectors and non-target impact on the microcrustacean Daphnia magna. Molecules 24(5):879

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102

    Article  CAS  Google Scholar 

  • Ponsankar A, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A et al (2016) Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol Environ Saf 133:260–270

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan N, Karthi S, Raghuraman P, Ganesan R, Srinivasan K, Edwin ES, Ganesh-Kumar S, Mohd Esa N, Senthil-Nathan S, Vasantha-Srinivasan P, Krutmuangh P (2023a) Chemical screening and mosquitocidal activity of essential oil derived from Mikania scandens (L.) Willd. against Anopheles gambiae Giles and their non-toxicity on mosquito predators. All Life 16(1):2169959

    Article  Google Scholar 

  • Radhakrishnan N, Vasantha-Srinivasan P, Wadaan MA, Baabbad A, Vinayagam R, Kang SG (2023b) STITCH, physicochemical, ADMET, and in silico analysis of selected mikania constituents as anti-inflammatory agents. Processes 11:1722

    Article  CAS  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Isolation and identification of mosquito larvicidal com-pound from Abutilon indicum (Linn.) sweet. Parasitol Res 102:981–988

    Article  PubMed  Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29(9):913–920

    Article  CAS  Google Scholar 

  • Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol 14:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Gómez S, Pagán R, Pavela R, Mazzara E, Spinozzi E, Marinelli O, Zeppa L, Morshedloo MR, Maggi F, Canale A, Benelli G (2022) Lethal and sublethal effects of essential oil-loaded zein nanocapsules on a zoonotic disease vector mosquito, and their non-target impact. Ind Crops Prod 176:114413

    Article  Google Scholar 

  • Santos SR, Melo MA, Cardoso AV, Santos R, de Sousa DP, Cavalcanti SC (2011) Structure–activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere 84(1):150–153

    Article  CAS  PubMed  Google Scholar 

  • Sedaghat MM, Dehkordi AS, Abai MR, Khanavi M, Mohtarami F, Abadi YS, Rafi F, Vatandoost HASSAN (2011) Larvicidal activity of essential oils of Apiaceae plants against malaria vector. Anopheles Stephensi Iranian J Arthropod-Borne Diseases 5(2):51

    Google Scholar 

  • Şengül Demirak MŞ, Canpolat E (2022) Plant-based bio-insecticides for mosquito control: impact on insecticide resistance and disease transmission. Insects 13(2):162

    Article  PubMed  PubMed Central  Google Scholar 

  • Senthil-Nathan S, Choi MY, Seo HY, Paik CH, Kalaivani K, Kim JD (2008) Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown planthopper Nilaparvata lugens (Stål). Ecotoxicol Environ Saf 70(2):244–250

    Article  PubMed  Google Scholar 

  • Stenrod M, Almvik M, Eklo OM, Gimsing AL, Holten R, Künnis-Beres K, Larsbo M, Putlies L, Siimes K, Turka I, Uusi-Kämppä J (2016) Pesticide regulatory risk assessment, monitoring, and fate studies in the northern zone: recommendations from a Nordic-Baltic workshop. Environ Sci Pollut Res 23:15779–15788

    Article  Google Scholar 

  • Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, Chellappandian M, Kalaivani K, Senthil-Nathan S, Benelli G (2018) Development of an eco-friendly mosquitocidal agent from Alangium salvifolium against the dengue vector Aedes aegypti and its biosafety on the aquatic predator. Environ Sci Pollut Res 25:10340–10352

    Article  CAS  Google Scholar 

  • Tolle MA (2009) Mosquito-borne diseases. Curr Prob Pediatr Adolesc Health Care 39:97–140

    Google Scholar 

  • Tripathi AK, Prajapati V, Kumar S (2003) Bioactivities of l-carvone, d-carvone, and dihydrocarvone toward three stored product beetles. J Econom Entomol 96(5):1594–1601

    Article  CAS  Google Scholar 

  • Tripathi AK, Upadhyay S, Bhuiyan M, Bhattacharya PR (2009) A review on prospects of essential oils as biopesticide in in-sectpest management. J Pharmacogn Phytother 1:52–63

    CAS  Google Scholar 

  • Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin ES, Ponsankar A, Selin-Rani S, Pradeepa V, Sakthi-Bhagavathy M, Kalaivani K, Hunter WB, Duraipandiyan V (2016) Developmental response of Spodoptera litura Fab. to treatments of crude volatile oil from Piper betle L. and evaluation of toxicity to earthworm, Eudrilus eugeniae Kinb. Chemosphere 155:336–347

    Article  CAS  PubMed  Google Scholar 

  • Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Edwin ES, Selin-Rani S, Chellappandian M, Pradeepa V, Lija-Escaline J, Kalaivani K, Hunter WB (2017) Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Ecotoxicol Environ Saf 139:439–446

    Article  CAS  PubMed  Google Scholar 

  • Vasantha-Srinivasan P, Chellappandian M, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Karthi S, Edwin ES, Selin-Rani S, Kalaivani K, Maggi F, Benelli G (2018) A novel herbal product based on Piper betle and Sphaeranthus indicus essential oils: toxicity, repellent activity and impact on detoxifying enzymes GST and CYP450 of Aedes aegypti Liston (Diptera: Culicidae). J Asia-Pac Entomol 21(4):1466–1472

    Article  Google Scholar 

  • Vasantha-Srinivasan P, Shanmuga-Priya S, Han YS, Radhakrishnan N, Karthi S, Elsadek MF, Mustafa AEZM, Senthil-Nathan S (2023) Phyto-chemical screening, insecticidal potential and detoxifying enzyme inhibition of Ficus auriculata (Lour.) extracts, against the mosquito vector and non-target aquatic predator. Biocatal Agric Biotechnol 53:102864

    Article  CAS  Google Scholar 

  • Vasantha-Srinivasan P, Unni PKS, Karthi S, Ganesan R, Senthil-Nathan S, Chellappandian M, Radhakrishnan N, Rajagopal R, Patcharin K (2024) Bio-efficacy of chloroform crude extracts of chick weed Ageratum conyzoides (Linn.) against the tobacco cutworm Spodoptera litura (Linn.) and their non-toxicity against the beneficial earthworm. J King Saud Univ-Sci 36(1):102930

    Article  Google Scholar 

  • Volkman A, Peters W (1989) Investigations on the midgut caeca of mosquito larvae. II. Functional aspects. Tissue Cell 21:253–261

    Article  Google Scholar 

  • WHO (2009) Guidelines for efficacy testing of mosquito repellents for human skin. WHO/HTM/NTD/WHOPES/2009.4. Control of neglected tropical diseases. World Health Organization, Geneva

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization

    Google Scholar 

  • Yogarajalakshmi P, Poonguzhali TN, Ganesan R, Karthi S, Senthil-Nathan S et al (2020) Toxicological screening of marine red algae Champia parvula (C. Agardh) against the dengue mosquito vector Aedes aegypti (Linn.) and its non-toxicity against three beneficial aquatic predators. Aquat Toxicol 222:105474

    Article  CAS  PubMed  Google Scholar 

  • Zulkifli MH, Abdullah ZL, Yusof NISM, Fauzi FM (2023) In silico toxicity studies of traditional Chinese herbal medicine: a mini review. Curr Opin Struct Biol 80:102588

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Dr. K. G. Sivaramakrishnan for his encouragement and support for conducting this investigation. We would also like to thank Ms. Chandini, research scholar, Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, for her support on data and statistical analyses in Minitab. The authors wish to acknowledge the support received from the “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002), and Department of Science and Technology (DST-FIST), India under the FIST program (SR/FIST/LS-1/2019/522).The authors extend their appreciation to the Researchers supporting project number (RSP2024R414) King Saud University, Riyadh, Saudi Arabia.

Funding

This research was supported by the “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002) and the Department of Science and Technology (DST-FIST), India, under the FIST program (SR/FIST/LS-1/2019/522). Also, this research was funded by King Saud University, Riyadh, Saudi Arabia Project number (RSP2024R414).

Author information

Authors and Affiliations

Authors

Contributions

Pavana Sivadasan Unni: conceptualization of the study, investigation, interpretation of results, validation, writing-original draft, supervision. Pandiyan Kirupaanntha-Rajan: conceptualization of the study, investigation, interpretation of results, validation, writing-original draft, supervision. Prabhakaran Vasantha-Srinivasan: conceptualization of the study, development of methodology, investigation, interpretation of results, validation, writing-review, supervision, project administration, resources. Sridhar Srinivasan: conceptualization of the study, investigation, interpretation of results, writing-review, supervision. Yeon Soo Han: conceptualization of the study, development of methodology, investigation, interpretation of results, writing-review, project administration, funding acquisition. Sengodan Karthi: conceptualization of the study, development of methodology, investigation, interpretation of results, validation, writing-review. Narayanaswamy Radhakrishnan: conceptualization of the study, development of methodology, investigation, interpretation of results, validation, writing-review, resources. Ki Beom Park: conceptualization of the study, investigation, interpretation of results, validation, writing-review, resources. Rajakrishnan Rajagopal: conceptualization of the study, development of methodology, investigation, interpretation of results, validation, writing-review, resources. Sengottayan Senthil-Nathan: conceptualization of the study, development of methodology, investigation, interpretation of results, writing-review, project administration.

Corresponding author

Correspondence to Sengottayan Senthil-Nathan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All listed authors have approved the manuscript before submission, including the names and order of authors.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Giovanni Benelli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unni, P.S., Kirupaanntha-Rajan, P., Vasantha-Srinivasan, P. et al. Chemical composition and toxicity of commercial Mentha spicata and Eucalyptus citriodora essential oils on Culex quinquefasciatus and non-target insects. Environ Sci Pollut Res 31, 21610–21631 (2024). https://doi.org/10.1007/s11356-024-32249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32249-6

Keywords

Navigation