Log in

Investigating the stability of Ni and Fe nanoparticle distribution and the MWCNT structure in the dry reforming of methane

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Catalysts based on Ni and Fe nanoparticles deposited selectively on carbon nanotubes were investigated before and after the dry methane reforming. Three catalysts were synthesized and evaluated, varying the concentration of Ni inside and Fe outside the carbon tubes. BET analysis revealed that the acid treatment opened the ends of the nanotubes and resulted in a higher surface area. Transmission electron microscopy (TEM) showed 24 layers with inner diameter ranging from 4 to 6 nm and outer diameter ranging from 16 to 22 nm. Raman spectroscopy confirmed that after calcination at high temperature the structure of the nanotubes was maintained. X-ray diffraction (XRD) analysis of the catalysts confirmed the presence of NiO (2.6–3.2 nm) and Fe2O3 (4.3 nm) crystallites. The catalytic tests presented high activity in dry methane reform (DRM). The catalysts 10Ni@CNT and 10Ni@CNT/5Fe presented conversions of CH4 (63 and 67%) and CO2 (72 and 88%), respectively, at 800 °C, under atmospheric pressure. Analysis after the reaction showed an increasing ratio of ID/IG, which indicates the formation of defects. The Raman analysis showed that even after calcination at high temperatures the structures of the nanotubes were mostly preserved, and TEM images showed that during the reaction, there were formation of nanotubes occurring randomly.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author.

References

Download references

Funding

The authors are grateful for the financial support of CAPES (Capes 88882.333487/2019–01) for the scholarship (Vinicius) received during this work.

Author information

Authors and Affiliations

Authors

Contributions

CEK has provided scientific suggestions and some results and edited the first and final draft, VMS has provided the major results, and MS has prepared the final manuscript and proposed the idea.

Corresponding author

Correspondence to Martin Schmal.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have given explicit consent to publish this work.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8005 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozonoe, C.E., Santos, V.M. & Schmal, M. Investigating the stability of Ni and Fe nanoparticle distribution and the MWCNT structure in the dry reforming of methane. Environ Sci Pollut Res 30, 111382–111396 (2023). https://doi.org/10.1007/s11356-023-30205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30205-4

Keywords

Navigation