Log in

Machine learning strengthened prediction of tracheal, bronchus, and lung cancer deaths due to air pollution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work pointed out the use of machine learning tools to predict the effect of CO, O3, CH4, and CO2 on TBL (tracheal, bronchus, and lung cancer) deaths from 1990 to 2019. In this study, data from 203 countries/locations were used. We used evaluation metrics like accuracy, area under curve (AUC), recall, precision, and Matthews correlation coefficient (MCC) to determine the prediction efficiency of the models. The models that yielded accuracy between 89 and 90 were selected in this study. The essential features in the prediction process were extracted, and it was found that CO influenced the prediction process. Extra trees classifier, random forest classifier, gradient boosting classifier, and light gradient boosting machine were selected from 14 other classifiers based on the accuracy metric. The best-performing models, according to our benchmark standards, are the extra trees classifier (90.83%), random forest classifier (89.17%), gradient boosting classifier (89.17%), and light gradient boosting machine (89.17). We conclude that machine learning models can be used in predicting mortality, i.e., the number of deaths, and could assist us in predicting the role of air pollutants on TBL deaths globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets used in this study are available from https://giovanni.gsfc.nasa.gov/giovanni/ and https://www.healthdata.org/.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author contributes to all the sections of the manuscript.

Corresponding author

Correspondence to Jagadish Kumar Mogaraju.

Ethics declarations

Ethics approval

This is an observational study, and ethical approval is not required, as confirmed by the data supplier.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogaraju, .K. Machine learning strengthened prediction of tracheal, bronchus, and lung cancer deaths due to air pollution. Environ Sci Pollut Res 30, 100539–100551 (2023). https://doi.org/10.1007/s11356-023-29448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29448-y

Keywords

Navigation